K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

\(A=163^2+74.163+37^2\)

\(=163^2+2.37.163+37^2\)

\(=\left(163+37\right)^2=200^2\)

\(B=147^2-94.147+47^2\)

\(=147^2-2.47.147+47^2\)

\(=\left(147-47\right)^2=100^2\)

Vậy A > B

7 tháng 8 2016

\(E=163^2+74\times163+37^2=163^2+2\times163\times37+37^2=\left(163+37\right)^2=200^2\)

\(F=147^2-94\times147+47^2=147^2-2\times147\times47+47^2=\left(147-47\right)^2=100^2\)

\(\frac{E}{F}=\frac{200^2}{100^2}=\left(\frac{200}{100}\right)^2=2^2=4\)

\(E=4F\)

a: \(=1995^2-\left(1995^2-1\right)=1995^2-1995^2+1=1\)

b: \(=18^8-18^8+1=1\)

c: \(=\left(163+37\right)^2=200^2=40000\)

12 tháng 9 2019

\(A=3+5+...+199>1=B\)

12 tháng 9 2019

Làm dễ hiểu chút

\(A=\left(2^2+4^2+...+100^2\right)-\left(1^2+3^2+...+99^2\right)\)

\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)

\(=\left(2+1\right)\left(2-1\right)+\left(4+3\right)\left(4-3\right)+...+\left(100-99\right)\left(99+100\right)\)

\(=3+7+...+199\)

\(B=3^8.7^8-\left(21^4-1\right)\left(21^4+1\right)\)

\(=21^8-\left(21^8-1\right)=1\)

Vậy A > B

20 tháng 9 2017

MẤY BẠN GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮM

20 tháng 9 2017

A = 19952 - ( 1995-1) (1995+1)

= 19952 - (19952 - 12)

= 19952 - 19952 +1

= 1

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

\(A=2018^2-2017.2019=2018^2-(2018-1)(2018+1)\)

\(=2018^2-(2018^2-1^2)=1\)

\(B=9^8.2^8-(18^4-1)(18^4+1)\)

\(=(9.2)^8-[(18^4)^2-1^2]\)

\(=18^8-(18^8-1)=1\)

\(C=163^2+74.163+37^2=163^2+2.37.163+37^2\)

\(=(163+37)^2=200^2=40000\)

\(D=\frac{2018^3-1}{2018^2+2019}=\frac{(2018-1)(2018^2+2018+1)}{2018^2+2019}\)

\(=\frac{2017(2018^2+2019)}{2018^2+2019}=2017\)

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Sử dụng công thức \((a-b)(a+b)=a^2-b^2\)

\(E=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^8-1)(2^8+1)(2^{16}+1)-2^{32}\)

\(=(2^{16}-1)(2^{16}+1)-2^{32}\)

\(=(2^{32}-1)-2^{32}=-1\)