Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\hept{\begin{cases}27^{11}=3^{3.11}=3^{33}\\81^8=3^{4.8}=3^{32}\end{cases}\Rightarrow27^{11}>81^8}\)
b.\(\hept{\begin{cases}625^5=5^{4.5}=5^{20}\\125^7=5^{3.7}=5^{21}\end{cases}\Rightarrow625^5< 125^7}\)
c.\(\hept{\begin{cases}5^{36}=125^{12}\\11^{24}=121^{12}\end{cases}\Rightarrow5^{36}>11^{24}}\)
d. \(\hept{\begin{cases}3^{2n}=9^n\\2^{3n}=8^n\end{cases}\Rightarrow3^{2n}>2^{3n}}\)
a) Ta có 2711 = (33)11 = 33.11 = 333
=> 818 = (34)8 = 34.8 = 332
Vì 333 > 332
=> 2711 > 818
b) Ta có : 6255 = (54)5 = 54.5 = 520
Lại có 1257 = (53)7 = 53.7 = 521
Vì 520 < 521
=> 6255 < 1257
c) Ta có 536 = 53.12 = (53)12 = 12512
Lại có 1124 = 112.12 = (112)12 = 12112
Vì 125 > 121 => 12512 > 12112 => 536 > 1124
d) Ta có 32n = (32)n = 9n
Lại có 23n = (23)n = 8n
Vì \(n\inℕ^∗\)=> 9n > 8n => 32n > 23n
a. Ta có : 27 ^11 = (3^3)^11= 3^33
81^8=(3^4)^8 = 3 ^32
=> 27^11>81^8
b. 625^5= (5^4)^5=5^20
125^7=(5^3)^7=5^21
=> 125^7>625^5
c. 5^36= (5^3)^12 =125^12
11^24=(11^2)^12= 121^12
=> 5^36>11^24
d. 3^2n = 9^n
2^3n= 8^n
=> 3^2n>2^3n
\(a,27^{11}\)và \(81^8\)
Ta có:
\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
Vì \(3^{33}>3^{32}\Rightarrow27^{11}>81^8\)
\(b,625^5\)và \(125^7\)
Ta có:
\(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(5^{20}< 5^{21}\Rightarrow625^5< 125^7\)
\(27^{11}=\left(3^3\right)^{11}=3^{33};81^8=\left(3^4\right)^8=3^{32}\rightarrow27^{11}>81^8\)
a) 2711 = (33)11 = 333; 818 = (34)8 = 332
Do 33 > 32 => 2711 > 818
b) 1619 = (24)19 = 276; 825 = (23)25 = 275
Do 76 > 75 => 1619 > 825
c) 6255 = (54)5 = 520; 1257 = (53)7 = 521
Do 20 < 21 => 6255 < 1257
d) 536 = (53)12 = 12512; 1124 = (112)12 = 12112
Do 125 > 121 => 536 > 1124
e) 32n = 9n; 23n = 8n; Do 9 > 8 => 32n > 23n
f) 354 = (32)27 = 927; 281 = (23)27 = 827
Do 9 > 8 => 354 > 281
a)b) phân tích ra đơn giản rồi
c)
\(5^{36}=5^{6\cdot6}=\left(5^6\right)^6=15625^6\)
\(11^{24}=11^{6\cdot4}=\left(11^4\right)^6=14641^6\)
=> tự kết luận
d)
\(3^{2n}=\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
=> tự kết luận
27^11 và 81^8
27^11=(3^3)^11=3^33
81^8=(3^4)^8=3^32
vì 32<32 -> 27^11 >81^8
còn lại tương tự nha
a ) 27 11 và 81 8
Ta có :
27 11 = ( 3 3 ) 11 = 3 33
81 8 = ( 3 4 ) 8 = 3 32
Vì 3 33 > 3 32
=> 27 11 > 81 8
b ) 625 5 và 125 7
Ta có :
625 5 = ( 5 4 ) 5 = 5 20
125 7 = ( 5 3 ) 7 = 5 21
Ví 5 20 < 5 21
=> 625 5 < 125 7
c ) 5 36 và 11 24
Ta có
5 36 = ( 5 6 ) 6 = 15625 6
11 24 = ( 11 4 ) 6 = 14641 6
Vì 15625 6 < 14641 6
=> 5 36 > 1124
d ) 3 2n và 2 3n
Ta có :
3 2n = ( 3 2 ) n = 9 n
2 3n = ( 2 3 ) n = 8 n
Vì 9 n > 8 n
=> 3 2n > 2 3n