Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)27^11=(3^3)^11=3^33
81^8=(3^4)8=3^32
vì 3^33>3^32 nên 27^11>81^8
b)ko biết làm chỉ biết 3^150>2^225
c)27^50=27^5x10=(27^5)^10=14348907^10
240^30=240^3x10=(240^3)^10=13824000^10
suy ra 27^50>240^30
a) Ta có: \(27^{11}=\left(3^3\right)^{^{11}}=3^{3.11}=3^{33}\)
\(81^8=\left(3^4\right)^{^8}=3^{4.8}=3^{32}\)
Vì \(3^{33}>3^{32}\)
nên \(27^{11}>81^8\)
b) Ta có: \(3^{150}=3^{2.75}=\left(3^2\right)^{^{75}}=9^{75}\)
\(2^{225}=2^{3.75}=\left(2^3\right)^{^{75}}=8^{75}\)
vì \(9^{75}>8^{75}\)
nên \(3^{150}>2^{225}\)
c) Ta có:
\(\frac{27^{50}}{240^{30}}=\frac{27^{30}.27^{20}}{240^{30}}=\frac{3^{30}.3^{30}.3^{30}.3^{20}.3^{20}.2^{20}}{3^{30}.80^{30}}\)
\(=\frac{3^{120}}{80^{30}}=\frac{\left(3^4\right)^{^{30}}}{80^{30}}=\frac{81^{30}}{80^{30}}\)
Vì \(\frac{81^{30}}{80^{30}}>1\)\(\Rightarrow\frac{27^{50}}{240^{30}}>1\)\(\Rightarrow27^{50}>240^{30}\)
1.a=2009^2009(2009+1)
=2009^2009x2010. tự cm nốt
e tách số mũ ra nhé
a^m>a^n(m>n>0)
Câu 6 :
Vì bình phương một số luôn lớn hơn hoặc bằng 0
Mà tổng của chúng bằng 0
\(\Rightarrow2x+3=3x-2=0\)
\(\Leftrightarrow2x-3x=-2-3\)
\(\Leftrightarrow-x=-5\)
\(\Leftrightarrow x=5\left(\text{Thỏa mãn}\right)\)
Vậy có số hữu tỉ x thỏa mãn
\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\\\left(3x-2\right)^2\ge0\end{cases}\Rightarrow\left(2x+3\right)^2+\left(3x-2\right)^2\ge0}\)
dấu = xảy ra khi: \(\hept{\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\frac{2}{3}\end{cases}}}\)
=> ko có giá trị x nào t/m để \(\left(2x+3\right)^2+\left(3x-2\right)^2=0\)
p/s: Trần Thanh Phương sai rồi
a: \(5^{100}=\left(5^4\right)^{25}=625^{25}\)
\(8^{75}=\left(8^3\right)^{25}=512^{25}\)
mà 625>512
nên \(5^{100}>8^{75}\)
b: \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=5^{21}\)
mà 20<21
nên \(625^5< 125^7\)
c: \(5^{23}=5^{22}\cdot5< 6\cdot5^{22}\)
d: \(7\cdot2^{13}< 8\cdot2^{13}=2^{16}\)
mãi ko thấy ai làm tớ làm giúp nì =)
\(\text{ta có:}\hept{\begin{cases}\frac{2002}{2003}< 1\\\frac{2005}{2004}>1\end{cases}}\Rightarrow\frac{2005}{2004}>\frac{2002}{2003}\Rightarrow-\frac{2005}{2004}< -\frac{2002}{2003}\)
\(\text{ta có: }\hept{\begin{cases}-\frac{1}{10^5}< 0\\\frac{-9}{-10}>0\end{cases}}\Rightarrow\frac{-1}{10^5}< \frac{-9}{-10}\)
a) Ta có :
\(\hept{\begin{cases}27^{11}=\left(3^3\right)^{11}=3^{33}\\81^8=\left(3^4\right)^8=3^{32}\end{cases}}\)
Vì 333 > 332
=> 2711 > 818
b) Ta có:
\(\hept{\begin{cases}2^{225}=\left(2^3\right)^{75}=8^{75}\\3^{150}=\left(3^2\right)^{75}=9^{75}\end{cases}}\)
Vì 875 < 975
=> 2225 < 3150
Thôi còn lại bn tự làm nốt nha . Nhìn mà nản !!
a) \(\hept{\begin{cases}27^{11}=\left(3^3\right)^{11}=3^{33}\\81^8=\left(3^4\right)^8=3^{32}\end{cases}}\)
333 > 332 => 2711 > 818
b) \(\hept{\begin{cases}2^{225}=\left(2^3\right)^{75}=8^{75}\\3^{150}=\left(3^2\right)^{75}=9^{75}\end{cases}}\)
875 < 975 => 2225 < 3150
c) \(\hept{\begin{cases}2^{500}=\left(2^5\right)^{100}=32^{100}\\5^{200}=\left(5^2\right)^{100}=25^{100}\end{cases}}\)
32100 > 25100 => 2500 > 5200
d) \(\hept{\begin{cases}625^5=\left(5^4\right)^5=5^{20}\\125^7=\left(5^3\right)^7=5^{21}\end{cases}}\)
520 < 521 => 6255 < 1257
e) \(\hept{\begin{cases}5^{100}=\left(5^4\right)^{25}=625^{25}\\8^{75}=\left(8^3\right)^{25}=512^{25}\end{cases}}\)
62525 > 51225 => 5100 > 875
f) \(2^{16}=2^3\cdot2^{13}=8\cdot2^{13}\)
7 < 8 => 7.213 < 8.213 => 7.213 < 216
g) Ta có \(\frac{27^{50}}{240^{30}}=\frac{\left(3^3\right)^{50}}{3^{30}\cdot80^{30}}=\frac{3^{150}}{3^{30}\cdot80^{30}}=\frac{3^{120}}{80^{30}}=\frac{\left(3^4\right)^{30}}{80^{30}}=\frac{81^{30}}{80^{30}}\)
Vì 8130 > 8030 => 8130/8030 > 1 => 2750/24030 > 1 => 2750 > 24030
h) Ta có \(\hept{\begin{cases}63^9< 64^9=\left(2^6\right)^9=2^{54}\left(1\right)\\16^{14}=\left(2^4\right)^{14}=2^{56}< 17^{14}\left(2\right)\end{cases}}\)
Từ (1) và (2) => 639 < 254 < 256 < 1714
=> 639 < 1714