\(\dfrac{1}{1000}\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

a,

\(\dfrac{89}{-13}< 0< \dfrac{1}{123}\\ \Rightarrow\dfrac{89}{-13}< \dfrac{1}{123}\)

Vậy \(\dfrac{89}{-13}< \dfrac{1}{123}\)

b,

\(\dfrac{-13}{15}>\dfrac{-15}{15}=-1=\dfrac{-30}{30}>\dfrac{-31}{30}\)

Vậy \(\dfrac{-13}{15}>\dfrac{-31}{30}\)

c,

\(\dfrac{125}{123}=\dfrac{123}{123}+\dfrac{2}{123}=1+\dfrac{2}{123}\\ \dfrac{99}{97}=\dfrac{97}{97}+\dfrac{2}{97}=1+\dfrac{2}{97}\)

\(\dfrac{2}{97}>\dfrac{2}{123}\Rightarrow1+\dfrac{2}{97}>1+\dfrac{2}{123}\Leftrightarrow\dfrac{99}{97}>\dfrac{125}{123}\)

Vậy \(\dfrac{99}{97}>\dfrac{125}{123}\)

d,

\(\dfrac{125}{126}< \dfrac{126}{126}=1=\dfrac{986}{986}< \dfrac{987}{986}\)

Vậy \(\dfrac{125}{126}< \dfrac{987}{986}\)

29 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

b+c+d/a=c+d+a/b=d+a+b/c=a+b+c/d=3(a+b+c+d)/a+b+c+d=3

suy ra k=3

29 tháng 11 2017

taco:\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}+\dfrac{d+a+b}{c}=\dfrac{a+b+c}{d}=k\)=>\(\dfrac{b+c+d}{a}+1=\dfrac{c+d+a}{b}+1=\dfrac{a+b+d}{c}+1=\dfrac{a+b+c}{d}+1=k+1\)=>\(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}=k+1=\dfrac{a+b+c+d+a+b+c+d+a+b+c+d}{a+b+c+d}=\dfrac{4.\left(a+b+c+d\right)}{a+b+c+d}=4\)

=>k+1=4

=>k=3

6 tháng 11 2024

 a;\(\dfrac{17}{24}\)  < \(\dfrac{17}{34}\) ⇒ \(\dfrac{-17}{24}\) > \(\dfrac{-17}{34}\) = - \(\dfrac{1}{2}\)

  \(\dfrac{25}{31}\)  > \(\dfrac{25}{50}\) ⇒ - \(\dfrac{25}{31}\)  < \(\dfrac{-25}{50}\) = - \(\dfrac{1}{2}\) 

    Vậy - \(\dfrac{17}{34}\) > - \(\dfrac{25}{31}\) 

6 tháng 11 2024

b;  \(\dfrac{27}{38}\) > \(\dfrac{27}{39}\) > \(\dfrac{25}{39}\) 

⇒ - \(\dfrac{27}{38}\) < - \(\dfrac{25}{39}\)  = \(\dfrac{-125}{195}\) 

Vậy - \(\dfrac{27}{38}\) < - \(\dfrac{125}{195}\)

 

22 tháng 7 2017

gianroi

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:
\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk, c=dk \)

Khi đó:

\(\frac{2002a+2003b}{2002a-2003b}=\frac{2002bk+2003b}{2002bk-2003b}=\frac{b(2002k+2003)}{b(2002k-2003)}=\frac{2002k+2003}{2002k-2003}(1)\)

\(\frac{2002c+2003d}{2002c-2003d}=\frac{2002dk+2002d}{2002dk-2003d}=\frac{d(2002k+2003)}{d(2002k-2003)}=\frac{2002k+2003}{2002k-2003}(2)\)

Từ \((1);(2)\Rightarrow \frac{2002a+2003b}{2002a-2003b}=\frac{2002c+2003d}{2002c-2003d}\)

Ta có đpcm.

23 tháng 9 2018

Xét tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) . Gọi giá trị chung của các tỉ số đó là k, ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=> \(a=k.b,c=k.d\)

Ta có :

( 1 )

= \(\dfrac{2002a+2003b}{2002a-2003b}=\dfrac{2002kb+2003b}{2002kb-2003b}\)

= \(\dfrac{b.\left(2002k+2003\right)}{b.\left(2002k-2003\right)}=\dfrac{2002k+2003}{2002k-2003}\)

( 2 ) \(\dfrac{2002c+2003d}{2002c-2003d}=\dfrac{2002kd+2003d}{2002kd-2003d}\)

= \(\dfrac{d.\left(2002k+2003\right)}{d.\left(2002k-2003\right)}=\dfrac{2002k+2003}{2002k-2003}\)

Từ ( 1 ) và ( 2 ) => \(\dfrac{2002a+2003b}{2002a-2003b}=\dfrac{2002c+2003d}{2002c-2003d}\)

7 tháng 10 2017

1) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (1)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

2) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)

Ta có: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (2)

Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

8 tháng 10 2017

lm cách ap dung tc day ti so = nhau

28 tháng 5 2017

a) Ta có : \(\dfrac{-1}{5}< 0< \dfrac{1}{1000}\)

\(\Rightarrow\dfrac{-1}{5}< \dfrac{1}{1000}\)

b) Ta có : \(\dfrac{267}{268}< 1< \dfrac{1347}{1343}\)

=> \(\dfrac{267}{-268}< -\dfrac{1347}{1343}\)

c) \(\dfrac{13}{38}>\dfrac{13}{39}=\dfrac{1}{3}=\dfrac{19}{87}>\dfrac{29}{88}\)

=> \(-\dfrac{13}{38}< \dfrac{29}{-88}\)

d) \(\dfrac{181818}{313131}=\dfrac{18}{31}\)

=> \(-\dfrac{18}{31}=-\dfrac{181818}{313131}\)

25 tháng 8 2017

bạn trả lời thực sự hay

25 tháng 12 2017

\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}=3\)

\(\Rightarrow\left(\dfrac{x-1}{2016}-1\right)+\left(\dfrac{x-2}{2015}-1\right)+\left(\dfrac{x-3}{2014}-1\right)=0\)

\(\Rightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}+\dfrac{x-2017}{2014}=0\)

\(\Rightarrow\left(x-2017\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}+\dfrac{1}{2014}\right)=0\)

\(\dfrac{1}{2016}+\dfrac{1}{2015}+\dfrac{1}{2014}\ne0\) nên \(x-2017=0\Leftrightarrow x=2017\)

25 tháng 12 2017

cảm ơn nhiều

8 tháng 11 2018

ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)
=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)
mặt khác ta có: x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)
từ (1) và (2) ta => (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2 => đpcm

8 tháng 11 2018

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)

\(\dfrac{bz-cy}{a}=\dfrac{b.ck-c.bk}{a}=\dfrac{0}{a}=0\)(1)

\(\dfrac{cx-az}{b}=\dfrac{c.ak-a.ck}{b}=\dfrac{0}{b}=0\)(2)

\(\dfrac{ay-bz}{c}=\dfrac{a.bk-b.ak}{c}=\dfrac{0}{c}=0\)(3)

từ (1),(2) và(3) suy ra \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\left(đpcm\right)\)