Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 27/82 < 26/75 ( 2025/6250 < 2132\6250)
b) -49/78 > 64/ -95 ( - 3136/7410 > -4992/7410)
c) ta có: \(A=\frac{54.107-53}{53.107}=\frac{53.107+(107-53)}{53.107+54}=\frac{53.107+54}{53.107+54}=1\)
\(B=\frac{135.269-133}{134.269+135}=\frac{134.269+\left(269-133\right)}{134.269+135}=\frac{134.269+136}{134.269+135}>1\)
\(\Rightarrow A< B\)
d) ta có: \(A=\frac{3^{10}+1}{3^9+1}=\frac{3.\left(3^9+1\right)-2}{3^9+1}=\frac{3.\left(3^9+1\right)}{3^9+1}-\frac{2}{3^9+1}=3-\frac{2}{3^9+1}\)
\(B=\frac{3^9+1}{3^8+1}=\frac{3.\left(3^8+1\right)-2}{3^8+1}=\frac{3.\left(3^8+1\right)}{3^8+1}-\frac{2}{3^8+1}=3-\frac{2}{3^8+1}\)
mà \(\frac{2}{3^9+1}< \frac{2}{3^8+1}\Rightarrow3-\frac{2}{3^9+1}< 3-\frac{2}{3^8+1}\)
=> A < B
Ta có: A=\(\frac{20^8+1}{20^9+1}\)
=>20A=\(\frac{20^9+20}{20^9+1}\)=\(\frac{20^9+1+19}{20^9+1}=1+\frac{19}{20^9+1}\)
Lại có B=\(\frac{20^9+1}{20^{10}+1}\)
=>20B=\(\frac{20^{10}+20}{20^{10}+1}\)=\(\frac{20^{10}+1+19}{20^{10}+1}=\frac{20^{10}+1}{20^{10}+1}+\frac{19}{20^{10}+1}=1+\frac{19}{20^{10}+1}\)
Ta thấy \(20^9+1< 20^{10}+1\)
=>\(\frac{19}{20^9+1}>\frac{19}{20^{10}+1}\)
=>\(1+\frac{19}{20^9+1}>1+\frac{19}{20^{10}+1}\)
hay A>B
Vậy A>B
Xin lỗi vì sau 1 thời gian dài mới làm vì mik nghĩ bạn cx làm xong rồi nhưng coi như mik làm để tập quen vs nâng cao ik
bài 2
a, TS= 54 . 107 -53=(53+1) .107-53=53.107+107-53=53.107+ 54
<=>
\(\frac{TS}{MS}\)=\(\frac{54.107+54}{54.107+54}\)=1
Bài 1 :
\(a)\) Gọi \(ƯCLN\left(n+1;2n+3\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(2n+2\right)-\left(2n+3\right)⋮d\)
\(\Rightarrow\)\(2n+2-2n-3⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-1\right)\)
Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(d\in\left\{1;-1\right\}\)
Do đó :
\(ƯCLN\left(n+1;2n+3\right)=\left\{1;-1\right\}\)
Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản với mọi n
Chúc bạn học tốt ~
a.Vì \(\frac{17}{19}< 1\) và \(\frac{19}{17}>1\)
nên \(\frac{17}{19}< 1< \frac{19}{17}\)
hay \(\frac{17}{19}< \frac{19}{17}\)
b) \(\frac{15}{7}=2\frac{1}{7}\) và \(\frac{25}{12}=2\frac{1}{12}\)
Vì \(2\frac{1}{7}>2\frac{1}{12}\) nên \(\frac{15}{7}>\frac{25}{12}\)
\(A=\frac{54.107-53}{53.107+54}\)
\(\Leftrightarrow A=\frac{53.107+107-53}{53.107+54}\)
\(\Leftrightarrow A=\frac{53.107+54}{53.107+54}\)
\(\Leftrightarrow A=1\)
\(B=\frac{135.269-133}{134.269+135}\)
\(\Leftrightarrow B=\frac{134.269+269-133}{134.269+135}\)
\(\Leftrightarrow B=\frac{134.269+135}{134.269+135}\)
\(\Leftrightarrow B=1\)
Vì 1 = 1 nên A =B
a) (x - 3)(y - 3) = 9 = 1.9 = 3.3
Lập bảng:
x - 3 | 1 | -1 | 3 | -3 | 9 | -9 |
y - 3 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 4 | 2 | 6 | 0 | 12 | -3 |
y | 12 | -6 | 6 | 0 | 4 | 2 |
Vậy ...
b) A = \(\frac{10^{19}+1}{10^{20}+1}\) => 10A = \(\frac{10^{20}+10}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
B = \(\frac{10^{20}+1}{10^{21}+1}\) => 10B = \(\frac{10^{21}+10}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
Do \(10^{20}+1< 10^{21}+1\) => \(\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\) => 10A > 10B => A > B
B= 20^9+1/20^10+1
B= 20^9 +1 +19/ 20^10+1+19
B= 20^9 +20 /20^10+20
B= 20(20^8 +1) / 20(20^9+1)
B= 20^8+1 / 20^9+1 =A
=> A = B
Vậy...
b) C= 54.107- 53/ 53.107+ 54
C= (53+1)107-53 / 53.107 +54
C= 53.107+ 1.107 - 53/ 53.107 +54
C= 53.107 + 107 -53/ 53.107 +54
C= 53.107 + 54 / 53.107 + 54
C= 1
Vậy...