Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= 20^9+1/20^10+1
B= 20^9 +1 +19/ 20^10+1+19
B= 20^9 +20 /20^10+20
B= 20(20^8 +1) / 20(20^9+1)
B= 20^8+1 / 20^9+1 =A
=> A = B
Vậy...
b) C= 54.107- 53/ 53.107+ 54
C= (53+1)107-53 / 53.107 +54
C= 53.107+ 1.107 - 53/ 53.107 +54
C= 53.107 + 107 -53/ 53.107 +54
C= 53.107 + 54 / 53.107 + 54
C= 1
Vậy...
a) (x - 3)(y - 3) = 9 = 1.9 = 3.3
Lập bảng:
x - 3 | 1 | -1 | 3 | -3 | 9 | -9 |
y - 3 | 9 | -9 | 3 | -3 | 1 | -1 |
x | 4 | 2 | 6 | 0 | 12 | -3 |
y | 12 | -6 | 6 | 0 | 4 | 2 |
Vậy ...
b) A = \(\frac{10^{19}+1}{10^{20}+1}\) => 10A = \(\frac{10^{20}+10}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
B = \(\frac{10^{20}+1}{10^{21}+1}\) => 10B = \(\frac{10^{21}+10}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
Do \(10^{20}+1< 10^{21}+1\) => \(\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\) => 10A > 10B => A > B
Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
Ta có \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)
Cộng vế với vế ta được
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{20^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(\Rightarrow T< 2-\dfrac{1}{20}=\dfrac{39}{20}\)
mà 39/20 < 8/7 => T < 8/7
\(A=\dfrac{20^{10}+1}{20^{10}-1}=\dfrac{20^{10}-1}{20^{10}-1}+\dfrac{2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-1}{20^{10}-3}=\dfrac{20^{10}-3}{20^{10}-3}+\dfrac{2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
\(\dfrac{2}{20^{10}-1}>\dfrac{2}{20^{10}-3}\Leftrightarrow A>B\)
Ta có: A=\(\frac{20^8+1}{20^9+1}\)
=>20A=\(\frac{20^9+20}{20^9+1}\)=\(\frac{20^9+1+19}{20^9+1}=1+\frac{19}{20^9+1}\)
Lại có B=\(\frac{20^9+1}{20^{10}+1}\)
=>20B=\(\frac{20^{10}+20}{20^{10}+1}\)=\(\frac{20^{10}+1+19}{20^{10}+1}=\frac{20^{10}+1}{20^{10}+1}+\frac{19}{20^{10}+1}=1+\frac{19}{20^{10}+1}\)
Ta thấy \(20^9+1< 20^{10}+1\)
=>\(\frac{19}{20^9+1}>\frac{19}{20^{10}+1}\)
=>\(1+\frac{19}{20^9+1}>1+\frac{19}{20^{10}+1}\)
hay A>B
Vậy A>B
Xin lỗi vì sau 1 thời gian dài mới làm vì mik nghĩ bạn cx làm xong rồi nhưng coi như mik làm để tập quen vs nâng cao ik