Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Theo định lý Pitago ta có:
$AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8$ (cm)
b)
Từ kết quả phần a ta suy ra:
$BC>AC> AB$
$\Rightarrow \widehat{A}> \widehat{B}> \widehat{C}$
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)
Xét tam giác ABC có góc A=90 độ
Aps dụng tính chất điịnh lý Py-ta-go,ta có:
AB^2+AC^2=BC^2
=>AC^2=BC^2-AB^2
=>AC^2=10^2-6^2
=>AC^2=100-36
=>AC^2=64
=>AC=8 cm
b)Trong tam giác ABC,góc A=90 độ,góc B=60 độ,góc C=30 độ(vì các cạnh trong hình có tỉ lệ giống với tam giác Ai Cập là 3;4;5)
b. Vì AB < AC < BC ⇒ ∠C < ∠B < ∠A (quan hệ giữa góc và cạnh đối diện trong tam giác)
a: Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
b: XétΔABC có \(AC^2=BA^2+BC^2\)
nên ΔABC vuông tại B
a, Ta có AC > BC > AB
=> ^B > ^A > ^C
b, Ta có \(AC^2=AB^2+BC^2\Leftrightarrow100=64+36\)*đúng*
Vậy tam giác ABC vuông tại B
a) Xét ΔABC có AB=BC>AC(6cm=6cm>4cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}=\widehat{BAC}>\widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
b) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Xét ΔABC có AB<BC<AC(6cm<8cm<10cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}< \widehat{BAC}< \widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)