Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x = 1999
\(\Leftrightarrow\)x + 1 = 2000
Thay 2000 = x + 1 vào biểu thức A ta được :
A = x2000 - ( x + 1 )x1999 + ( x + 1 )x1998 - ( x + 1 )x1997 + ... - ( x + 1 )x2 + ( x + 1 )x + 727
A = x2000 - x2000 - x1999 + x1999 + x1998 - x1998 - x1997 + ... - x3 - x2 + x2 + x + 727
A = x + 727
Thay x = 1999 vào A ta được :
A = 1999 + 727 = 2726
\(A=1999.2000+1999\\ B=2000.1999+2000\)
Vì \(1999.2000+1999< 1999.2000+2000\)
\(=>A< B\)
Đúng thì tích nha :D
Ta có : A = 1999 x 2001 = 1999 x (1 + 2000) = 1999 x 2000 + 1999
B = 2000 x 2000 = 2000 x (1999 + 1) = 2000 x 1999 + 2000
Vậy A < B
Sorry mk chưa đoc kĩ đề mk làm lại nhá
Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2
Ta có : A = (2000 - 1)(2000 + 1) = 20002 - 1
Mà B = 20002
Nên A < B
Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2
Ta có : A = (2012 - 1)(2012 + 1) = 20122 - 1
Mà B = 20122
Nên A < B
a) Ta có: \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2\)
Vậy A < 20002
c) \(E=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50\)
\(F=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52\)
Vì 50 < 52 => 2.50 < 2.52
=> E < F
A=1998.2000=1998.(1999+1)=1998.1999+1998
1999.1999=1998.1999+1999
=>A<B
vậy A<B
a) \(49.51=\left(50-1\right)\left(50+1\right)=50^2-1^2=2500-1=2499\)
b) \(29.31=\left(30-1\right)\left(30+1\right)=30^2-1^2=900-1=899\)
c) \(101^2=\left(100+1\right)^2=100^2+2.100.1+1^2=10000+200+1=10201\)
d) \(99^2+2.99+1=\left(99+1\right)^2=100^2=10000\)
e) \(\left(10^2+8^2+6^2+4^2+2^2\right)-\left(9^2+7^2+5^2+3^2+1^2\right)\)
\(=10^2-9^2+8^2-7^2+6^2-5^2+4^2-3^2+2^2-1^2\)
\(=\left(10-9\right)\left(10+9\right)+\left(8-7\right)\left(8+7\right)+\left(6-5\right)\left(6+5\right)+\)
\(\left(4-3\right)\left(4+3\right)+\left(2-1\right)\left(2+1\right)\)
\(=10+9+8+7+6+5+4+3+2+1=55\)
f) \(1998^2-1997.\left(1998+1\right)=1998^2-\left(1998-1\right)\left(1998+1\right)\)
\(=1998^2-1998^2+1=1\)
+) Tìm số abc:
Vì abc > 600 và a chẵn nên a = 6 hoặc 8.
- nếu a = 6, ta có a.b.c = 6. 2m.2n = 24.m.n (đặt b = 2m, c = 2n, do b; c chẵn)
do số 6bc chia hết a.b.c nên 6bc chia hết 24.m.n hay 6bc là bội của 24, có thể là 624; 648;672; 698
đối chiếu điều kiện, chỉ có 624 thoả mãn
- nếu a = 8, ta có a.b.c = 8. 2m.2n = 32.m.n , tương tự như trên số 8bc là bội của 32, có thể là 800; 832; 864; 896
đối chiếu điều kiện, không có số nào thoả mãn
Vậy abc = 624
+) Tìm x, y
xxyy = (xx)2 + (yy)2
=> 1100. x + 11. y = 121.x2 + 121.y2 (cấu tạo số)
=> 100.x + y = 11x2 + 11y2 => x + y = 11.(x2 + y2) - 99.x
Vế phải luôn chia hết cho 11 nên vế trải phải chia hết cho 11, x; y là các chữ số nên x+ y = 11
+) Vậy \(A=\frac{1998\left(6+2+4-1\right)}{1999.11}=\frac{1998.11}{1999.11}=\frac{1998}{1999}\)
Ta có:
\(3^{1999}=3^{2000}:3=\left(3^2\right)^{1000}:3=9^{1000}:3=...1:3=...7\)
\(7^{1997}=7^{1996}.7=\left(7^2\right)^{998}.7=49^{998}.7=...1.7=...7\)
Do đó: \(3^{1999}-7^{1997}=...7-...7=...0\)
Vì \(...0\)chia hết cho 5 \(\Rightarrow3^{1999}-7^{1997}\)chia hết cho 5
Nguồn: https://olm.vn/hoi-dap/detail/41637165008.html
Chúc bạn học tốt !!!
\(A=1997.1999=\left(1998-1\right)\left(1998+1\right)=1998^2-1< 1998^2=B\)