K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2023

 a) Vì \(1,3>1\) nên hàm số \(y=1,3^x\)  là hàm số đồng biến trên \(\mathbb{R}.\)

Mà \(0,7>0,6\) nên \(1,3^{0,7}>1,3^{0,6}\)

b) Vì \(0,75< 1\) nên hàm số  là hàm số nghịch biến trên \(\mathbb{R}.\)

Mà \(-2,3>-2,4\) nên \(0,75^{-2,3}>0,75^{-2,4}\)

a: 1,3>1

=>HS y=1,3x đồng biến trên R

=>\(1.3^{0.7}>1.3^{0.6}\)

b: 0,75<1

=>HS y=0,75x nghịch biến trên R

-2,3>-2,4

=>\(0,75^{-2,3}< 0,75^{-2,4}\)

20 tháng 8 2023

tham khảo

a) Do \(0,85< 1\) nên hàm số \(y=0,85^x\) nghịch biến \(\mathbb{R}\).

Mà \(0,1>-0,1\) nên \(0,85^{0,1}< 0,85^{-0,1}\).

b) Do \(\pi>1\) nên hàm số \(y=\pi^x\) đồng biến trên \(\mathbb{R}\).

Mà \(-1,4< -0,5\) nên \(\pi^{-1,4}< \pi^{-0,5}\).

c) \(^4\sqrt{3}=3^{\dfrac{1}{4}};\dfrac{1}{^4\sqrt{3}}=\dfrac{1}{3^{\dfrac{1}{4}}}=3^{-\dfrac{1}{4}}\).

Do \(3>1\) nên hàm số \(y=3^x\) đồng biến trên \(\mathbb{R}\).

Mà \(\dfrac{1}{4}>-\dfrac{1}{4}\) nên \(3^{\dfrac{1}{4}}>3^{-\dfrac{1}{4}}\Leftrightarrow^4\sqrt{3}>\dfrac{1}{^4\sqrt{3}}\).

 

 

a: \(0,75< 1\)

=>Hàm số \(y=0,75^x\) nghịch biến trên R

mà -2,3>-2,4

nên \(0,75^{-2,3}< 0,75^{-2,4}\)

b: \(\dfrac{1}{4}< 1\)

=>Hàm số \(y=\left(\dfrac{1}{4}\right)^x\) nghịch biến trên R

mà 2023<2024

nên \(\left(\dfrac{1}{4}\right)^{2023}>\left(\dfrac{1}{4}\right)^{2024}\)

c: Vì 3,5>1

nên hàm số \(y=3,5^x\) đồng biến trên R

mà 2023<2024

nên \(3,5^{2023}< 3,5^{2024}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,x-1=0\Leftrightarrow x=1\)

Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)

\(b,x^2-1=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;1\right\}\)

c, ĐK: \(x\ge\dfrac{\sqrt{2}}{2}\)

\(\sqrt{2x^2-1}=x\Leftrightarrow2x^2-1=x^2\Leftrightarrow x^2=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;1\right\}\)

Từ đó, hai phương trình b và c có cùng tập nghiệm.

 

12 tháng 7 2021

1.

\(2cos4x-3=0\)

\(\Leftrightarrow cos4x=\dfrac{3}{2}\)

Mà \(cos4x\in\left[-1;1\right]\)

\(\Rightarrow\) phương trình vô nghiệm.

2.

\(cos5x+2=0\)

\(\Leftrightarrow cos5x=-2\)

Mà \(cos5x\in\left[-1;1\right]\)

\(\Rightarrow\) phương trình vô nghiệm.

12 tháng 7 2021

3.

\(cos2x+0,7=0\)

\(\Leftrightarrow cos2x=-\dfrac{7}{10}\)

\(\Leftrightarrow2x=\pm arccos\left(-\dfrac{7}{10}\right)+k2\pi\)

\(\Leftrightarrow x=\pm\dfrac{arccos\left(-\dfrac{7}{10}\right)}{2}+k\pi\)

4.

\(cos^22x-\dfrac{1}{4}=0\)

\(\Leftrightarrow cos^22x=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-\dfrac{1}{2}\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\pm\dfrac{2\pi}{3}+k2\pi\\2x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k\pi\\x=\pm\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)

18 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

HQ
Hà Quang Minh
Giáo viên
23 tháng 8 2023

\(a,a^{log_ab^{\alpha}}=c\Leftrightarrow log_ac=log_ab^{\alpha}\Leftrightarrow c=b^{\alpha}\Rightarrow a^{log_ab^{\alpha}}=b^{\alpha}\\ a^{\alpha log_ab}=c\Leftrightarrow\alpha log_ab=log_ac\Leftrightarrow log_ab^{\alpha}=log_ac\Leftrightarrow b^{\alpha}=c\Rightarrow a^{\alpha log_ab}=b^{\alpha}\\ \Rightarrow a^{log_ab^{\alpha}}=a^{\alpha log_ab}\)

\(b,a^{log_ab^{\alpha}}=a^{\alpha log_ab}\\ \Rightarrow log_ab^{\alpha}=\alpha log_ab\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(\left. \begin{array}{l}1 > 0\\n > 0\end{array} \right\} \Leftrightarrow \frac{1}{n} > 0 \Leftrightarrow {u_n} > 0\)

\(n \ge 1 \Leftrightarrow {u_n} = \frac{1}{n} \le \frac{1}{1} \Leftrightarrow {u_n} \le 1\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Theo định lý sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \to b = \frac{{a.\sin B}}{{\sin A}}\) thay vào \(S = \frac{1}{2}ab.\sin C\) ta có:

\(S = \frac{1}{2}ab.\sin C = \frac{1}{2}a.\frac{{a.\sin B}}{{\sin A}}.sin C = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\) (đpcm)

b) Ta có: \(\hat A + \hat B + \hat C = {180^0} \Rightarrow \hat A = {180^0} - {75^0} - {45^0} = {60^0}\)

\(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}} = \frac{{{{12}^2}.\sin {{75}^0}.\sin {{45}^0}}}{{2.\sin {{60}^0}}} = \frac{{144.\frac{1}{2}.\left( {\cos {{30}^0} - \cos {{120}^0}} \right)}}{{2.\frac{{\sqrt 3 }}{2}\;}} = \frac{{72.(\frac{{\sqrt 3 }}{2}-\frac{{-1 }}{2}})}{{\sqrt 3 }} = 36+12\sqrt 3 \)