Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có : \(\begin{cases}\left(0,01\right)^{-\sqrt{3}}=\left(10^{-2}\right)^{-\sqrt{3}}=\left(10\right)^{2\sqrt{3}};1000=10^3\\2\sqrt{3}>3\end{cases}\)
\(\Rightarrow\left(0,01\right)^{-\sqrt{3}}>1000\)
b. Ta có :
\(\frac{\pi}{2}>1\) và \(2\sqrt{2}< 3\)
\(\Rightarrow\left(\frac{\pi}{2}\right)^{2\sqrt{2}}< \left(\frac{\pi}{2}\right)^3\)
a) \(A=\frac{a^{\frac{5}{2}}\left(a^{\frac{1}{2}}-a^{\frac{-3}{2}}\right)}{a^{\frac{1}{2}}\left(a^{\frac{-1}{2}}-a^{\frac{3}{2}}\right)}=\frac{a^3-a}{1-a^2}=-a\)
Do đó : \(A=-\left(\pi-3\sqrt{2}\right)=3\sqrt{2}-\pi\)
b) Rút gọn B ta có :
\(B=\left(a^{\frac{1}{3}}+b^{\frac{1}{3}}\right)\left[\left(a^{\frac{1}{3}}\right)^2+\left(b^{\frac{1}{3}}\right)^2\right]=\left(a^{\frac{1}{3}}\right)^3+\left(b^{\frac{1}{3}}\right)^3=a+b\)
Do đó :
\(B=\left(7-\sqrt{2}\right)+\left(\sqrt{2}+3\right)=10\)
a) Tập xác định của hàm số là :
\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)
b) Tập xác định của hàm số là :
\(D=\left(1;+\infty\right)\)
c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)
Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
d) Hàm số xác định khi và chỉ khi
\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)
Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)
d) So sánh :
\(\sqrt{3}+1\) và \(\sqrt{7}\), ta có :
\(\left(\sqrt{3}+1\right)^2-\left(\sqrt{7}\right)^2=3+1+2\sqrt{3}-7=2\sqrt{3}-3\)
Hơn nữa :
\(\left(2\sqrt{3}\right)^2-3^2=4.3-9=9>0\)
Do đó
\(\sqrt{3}+1>\sqrt{7}\)
Mà \(e^{\sqrt{3}+1}>e^{\sqrt{7}}\)
c) Ta có :
\(\left(\frac{\pi}{5}\right)^{\sqrt{10}-3}=\frac{\left(\frac{\pi}{5}\right)^{\sqrt{10}}}{\left(\frac{\pi}{5}\right)^3}\)
Lại có \(0<\pi<5\) nên \(0<\frac{\pi}{5}<1\) và \(\sqrt{10}>3\)
Do đó : \(\left(\frac{\pi}{5}\right)^{\sqrt{10}}<\left(\frac{\pi}{5}\right)^3\)
Mà \(\left(\frac{\pi}{5}\right)^3>0\) nên \(\left(\frac{\pi}{5}\right)^{\sqrt{10}-3}=\frac{\left(\frac{\pi}{5}\right)^{10}}{\left(\frac{\pi}{5}\right)^3}<1\)
\(f\left(x\right)=cosx\Rightarrow f\left(f\left(\frac{\pi}{2}\right).\pi\right)=cos0=1\)
a) Ta có cơ số \(a=0,3<1\) và \(3,15>\pi>\frac{2}{3}>0,5\)
Nên thứ tự tăng dần là :
\(0,3^{3,15};0,3^{\pi};0,3^{\frac{2}{3}};0,3^{0,5}\)
b) Vì số mũ \(\pi>0\) nên hàm số lũy thừa \(y=x^{\pi}\) luôn đồng biến. Mặt khác :
\(\frac{1}{\sqrt{2}}<\sqrt{2}<1,8<\pi\)
Nên thứ tự tăng dần là :
\(\left(\frac{1}{\sqrt{2}}\right)^{\pi};\sqrt{2^{\pi}};1,8^{\pi};\pi^{\pi}\)
a) \(2^{-2}=\dfrac{1}{2^2}< 1\)
b) \(\left(0,013\right)^{-1}=\dfrac{1}{0,013}>1\)
c) \(\left(\dfrac{2}{7}\right)^5=\dfrac{2^5}{7^5}< 1\)
d) \(\left(\dfrac{1}{2}\right)^{\sqrt{3}}=\dfrac{1}{2^{\sqrt{3}}}< \dfrac{1}{2^{\sqrt{1}}}=\dfrac{1}{2}< 1\)
e) vì \(0< \dfrac{\pi}{4}< 1\)
Suy ra \(\left(\dfrac{\pi}{4}\right)^{\sqrt{5}-2}=\dfrac{\left(\dfrac{\pi}{4}\right)^{\sqrt{5}}}{\left(\dfrac{\pi}{2}\right)^2}>\dfrac{\left(\dfrac{\pi}{4}\right)^{\sqrt{4}}}{\left(\dfrac{\pi}{4}\right)^2}=1\)
f) Vì \(0< \dfrac{1}{3}< 1\)
Nên \(\left(\dfrac{1}{3}\right)^{\sqrt{8}-3}>\left(\dfrac{1}{3}\right)^{\sqrt{9}-3}=\left(\dfrac{1}{3}\right)^0=1\)
\(I_1=3\int_1^2x^2dx+\int_1^2\cos xdx+\int_1^2\frac{dx}{x}=x^3\)\(|^2 _1\)+\(\sin x\)\(|^2_1\) +\(\ln\left|x\right|\)\(|^2_1\)
\(=\left(8-1\right)+\left(\sin2-\sin1\right)+\left(\ln2-\ln1\right)\)
\(=7+\sin2-\sin1+\ln2\)
b) \(I_2=4\int_1^2\frac{dx}{x}-5\int_1^2x^4dx+2\int_1^2\sqrt{x}dx\)
\(=4\left(\ln2-\ln1\right)-\left(2^5-1^5\right)+\frac{4}{3}\left(2\sqrt{2}-1\sqrt{1}\right)\)
\(=4\ln2+\frac{8\sqrt{2}}{3}-32\frac{1}{3}\)
a) \(\sqrt[3]{10}=\sqrt[15]{10^5}>\sqrt[15]{20^3=\sqrt[5]{20}}\)
b) Vì \(\frac{1}{e}<1\) và \(\sqrt{8}-3<0\) nên \(\left(\frac{1}{e}\right)^{\sqrt{8}-3}>1\)
c) Vì \(\frac{1}{8}<1\) và \(\pi>3.14\) nên \(\left(\frac{1}{8}\right)^{\pi}<\left(\frac{1}{8}\right)^{3,14}\)
d) Vì \(\frac{1}{\pi}<1\) và \(1,4<\sqrt{2}\) nên \(\left(\frac{1}{\pi}\right)^{1,4}>\pi^{-\sqrt{2}}\)