Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có ˆAA^ = 800; ˆBB^ = 450
Nên ˆCC^ = 1800 – (800 + 450) = 550
(theo định lý tổng ba góc trong tam giác)
Vì 450 < 550 < 800 hay ˆBB^ < ˆCC^ < ˆAA^ => AC < AB < BC
Do AD là tia phân giác A => \(\widehat{A_1}=\widehat{A}_2\)
Xét tam giác ADB có:\(\widehat{A_1}+\widehat{ADB}+\widehat{B}=180\)
Hay A1 + 80 + B = 180 => A1 + B = 100 (1)
Do góc ADB + ADC = 180 (Kề bù)
=> 80+ ADC = 180
ADC = 100
Xét tam giác ADC có: \(\widehat{A_2}+\widehat{ADC}+\widehat{C}=180\)
A2 + 100 + C = 180
A2 + C = 80 (2)
Từ 1, 2, có: A2 + C + 20 = A1 + B = 100
=> A1 + C + 20 = A1 + 3/2C
3/2C - C = 20
=> 1/2C= 20
C= 40
Mà B = 3/2 C => B = 3/2 . 40 = 60
Xét tam giác ABC có: A+B+C = 180
hay A + 60+40=180
A= 80
Vậy ...........
2/
Xét tam giác ABC có : A + B + C = 180 => B+C = 180 - A => B+C = 180 - 80 => B+C = 100
Do BI;CI lần lượt là phân giác của B; C => B1 = B2 = 1/2 B ; C1 = C2 = 1/2 C
Xét tam giác IBC có:
B2+BIC+C2 = 180
(B2+C2) + BIC = 180
1/2 B + 1/2 C + BIC = 180
1/2 ( B+C) +BIC = 180
hay 1/2 . 100 + BIC = 180
BIC = 180 - 50
BIC = 130
Vậy ...
Xét tam giác ABC có : A + B + C = 180 độ
mà A = 70 độ => B + C = 110 độ
B : C = 2 : 3 => B/2 = C/3
=> B/2 = C/3 = B + C / 2 + 3 ( áp dụng t.c dãy tỉ số bằng nhau )
=> B/2 = C/3 = 110/5
=> B/2 = C/3 = 22
=> B = 22 . 2 = 44 ( độ )
C = 22 . 3 = 66 ( độ )
Do 44 độ < 66 độ < 70 độ
=> B < C < A
=> AC < AB < BC ( quan hệ cạnh đối diện và góc lớn hơn )
TK mk nha !!!
\(\widehat{BAC}\)= 1800 - (\(\widehat{B}+\widehat{C}\)) = 1800 - ( 800 + 300)= 700
\(\widehat{A}_1\)=\(\widehat{A}_2\)=\(\dfrac{\widehat{A}}{2}\)=\(\dfrac{70^0}{2}\)= 350
\(\widehat{ADC}=\widehat{B}+\widehat{A}_1\)(Góc ngoài của tam giác)
=800 + 350)= 1150
Do đó \(\widehat{ADB}\)= 1800 - \(\widehat{ADC}\)= 1800 + 1150=650
Hình vẽ:
Gọi A1, A2 là 2 góc được tạo ra bởi tia phân giác góc A.
Ta có:
Góc ∠BAC = 1800 – ( ∠B + ∠C)
= 1800 – ( 800 + 300) = 700
Hay ta có thể gọi ∠A = 700
Góc ∠A1 = ∠A2
= ∠A/2 = 700 /2 = 350
- Xét tam giác ADC ta có: Góc ∠ADC = 1800 – (∠C + ∠A2)
= 1800 – (350 + 300)= 1150
- Do đó góc ∠ADB = 1800 – ∠ADC
= 1800 – 1150
= 650
Giải:
Ta có: \(\widehat{A}=80^0\)
\(\widehat{C}=40^0\)
\(\Leftrightarrow\widehat{B}=180^0-80^0-40^0=60^0\) (Tổng ba góc của một tam giác)
Suy ra: \(\widehat{A}>\widehat{B}>\widehat{C}\)
\(\Leftrightarrow BC>AC>AB\) (Tính chất giữa góc và cạnh đối diện)
Vậy ...
sachbaitap.com