Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo giả thiết, tam giác cân này có một góc ngoài bằng 40o nên nó có một góc trong bằng 180o - 40o = 140o. Góc trong này không thể là góc ở đáy của tam giác cân mà phải là góc ở đỉnh. Vậy cạnh đáy của tam giác cân lớn hơn hai cạnh bên của nó.
1 a,Ta có ∆ ABC= ∆ HIK, nên cạnh tương ứng với BC là cạnh IK
góc tương ứng với góc H là góc A.
ta có : ∆ ABC= ∆ HIK
Suy ra: AB=HI, AC=HK, BC=IK.
=, =,=.
b,
∆ ABC= ∆HIK
Suy ra: AB=HI=2cm, BC=IK=6cm, ==400
2.
Ta có ∆ABC= ∆ DEF
Suy ra: AB=DE=4cm, BC=EF=6cm, DF=AC=5cm.
Chu vi của tam giác ABC bằng: AB+BC+AC= 4+5+6=15 (cm)
Chu vi của tam giác DEF bằng: DE+EF+DF= 4+5+6=15 (cm
Lời giải:
a) Gọi ABC là tam giác cân đã cho và góc ở đỉnh A bằng 40o. Ta có:
a) Gọi ABC là tam giác cân đã cho và góc ở đỉnh A bằng 40o. Ta có:
Gọi tam giác đó là ΔABC cân tại A
Trường hợp 1: Góc ở đáy bằng 400
hay \(\widehat{B}=\widehat{C}=40^0\)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{A}=180^0-2\cdot\widehat{B}\)(Số đo của góc ở đỉnh trong ΔBAC cân tại A)
hay \(\widehat{A}=100^0\)
Xét ΔABC có \(\widehat{A}>\widehat{B}=\widehat{C}\)(\(100^0>40^0=40^0\))
mà cạnh đối diện của góc A là BC
cạnh đối diện của góc B là AC
cạnh đối diện của góc C là AB
nên BC>AC=AB(Định lí quan hệ giữa góc và cạnh đối diện trong tam giác)
Trường hợp 2: Góc ở đỉnh bằng 400
hay \(\widehat{A}=40^0\)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của các góc ở đáy trong ΔABC cân tại A)
hay \(\left\{{}\begin{matrix}\widehat{B}=70^0\\\widehat{C}=70^0\end{matrix}\right.\)
Xét ΔABC có \(\widehat{B}=\widehat{C}>\widehat{A}\)(\(70^0=70^0>40^0\))
mà cạnh đối diện của góc B là AC
cạnh đối diện của góc C là AB
cạnh đối diện của góc A là BC
nên AC=AB>BC(Định lí quan hệ giữa góc và cạnh đối diện trong tam giác)
a: \(\widehat{A}=180^0-70^0-36^0=74^0\)
Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)
nên BC>AC>AB
b: Xét ΔABM vuông tại B và ΔADM vuông tại D có
AM chung
AB=AD
Do đó: ΔABM=ΔADM
c: Ta có: ΔABM=ΔADM
nên MB=MD
hay M nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Ta có: NB=ND
nên N nằm trên đường trung trực của BD(3)
Từ (1), (2) và (3) suy ra A,N,M thẳng hàng
a , Góc đáy bằng : (180-50)/2= 65 độ
b Góc ở đỉnh bằng 180 - 2.50 = 80 độ
Chứng minh:
Ta có: ^C= 30° => ^B= 60°
Trên cạnh BC lấy điểm M sao cho AB = BM.
=> ∆ABM cân tại B mà ^B= 60°
=>∆ABM đều
=> AB= BM= AM (1)
và ^BAM= ^B= ^BMA= 60°
∆ABC vuông tại A
=> ^B + ^C = 90°
=> 60° + ^C = 90°
=> ^C = 30° (2)
Ta lại có : ^BAM + ^MAC = ^BAC
=> 60° + ^MAC = 90°
=> ^MAC = 30° (3)
Từ (1) và (2): => ^MAC = ^C ( = 30°)
=> ∆AMC cân tại M
=> AM = MC (4)
Từ (1) và (4): => AB = BM =mc
=> 2AB = BM + MC
=> 2AB = BC
=> AB = BC/2 (đpcm)
Với tam giác ABC có góc A=90 độ và góc B=30 độ
=> góc C=60 độ
Gọi M là trung điểm của BC
mà tam giác ABC có góc A bằng 90 độ
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M(dấu hiệu nhận biết)
mà góc C bằng 60 độ
=> tam giác AMC đều(dấu hiệu nhận biết)
=>AC=MC(đ/n)
mà MC =1/2.BC (gt)
=> AC = 1/2 BC (tcbc)
Ta có điều phải chứng minh
Mình làm bài 2 nhé :
Gọi các góc của tam giác lần lượt là a , b , c
Theo đề bài ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3};a+b+c=180\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{180}{6}=30\)
\(\Rightarrow\)\(a=30.1=30\)
\(b=30.2=60\)
\(c=30.3=90\)
Vậy bạn tự kết luận nha
gọi a,b lần lượt là chiều dài , chiều rộng của tam giác (a,b > 0 )
ta có nữa chu vi hình chữ nhật là \(a+b=90:2=45\)
ta có \(a:b=2:3\Leftrightarrow\frac{a}{b}=\frac{2}{3}\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)và a+b=45
theo tính chất dãy tỉ số bằng nhau có
\(\frac{a}{2}=\frac{b}{3}=\frac{a+b}{2+3}=\frac{45}{5}=9\)
do đó
\(\hept{\begin{cases}\frac{a}{2}=9\Leftrightarrow a=2.9=18\\\frac{b}{3}=9\Leftrightarrow b=3.9=27\end{cases}}\)
vậy chiều dài tam giác là 18 chiều rộng tam giác lf 27
So sánh các cạnh của một tam giác cân, biết rằng nó có một góc ngoài bằng 40o