Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{3^8-3^6+3^6\cdot2^3}{5^3}=\dfrac{3^8-3^6\left(1-2^3\right)}{5^3}=\dfrac{11664}{125}\)
b: \(=\dfrac{7^4\cdot4-7^3}{7^3}=7\cdot4-1=27\)
c: \(=28^4-28^4+1=1\)
d: \(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)+1\)
\(=3^{32}\)
Giải:
a) \(M=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow3M=2^{32}-1\)
\(\Leftrightarrow M=\dfrac{2^{32}-1}{3}\)
Vậy ...
b) \(N=16\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^4-1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^8-1\right)\left(7^8+1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=\left(7^{16}-1\right)\left(7^{16}+1\right)\)
\(\Leftrightarrow3N=7^{32}-1\)
\(\Leftrightarrow N=\dfrac{7^{32}-1}{3}\)
Vậy ...
Làm dễ hiểu chút
\(A=\left(2^2+4^2+...+100^2\right)-\left(1^2+3^2+...+99^2\right)\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)
\(=\left(2+1\right)\left(2-1\right)+\left(4+3\right)\left(4-3\right)+...+\left(100-99\right)\left(99+100\right)\)
\(=3+7+...+199\)
\(B=3^8.7^8-\left(21^4-1\right)\left(21^4+1\right)\)
\(=21^8-\left(21^8-1\right)=1\)
Vậy A > B
=a, (x-3)(x+3)-(x-7)(x+7)= x2 - 9 - x2 + 7
= -2
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)= (4x-5)2 - 2(4x+5)(3x-2) + (3x-2)2
= ( 4x - 5 - 3x + 2 )2
= ( x - 3 )2
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2= 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= (3x-y)2+ 2(3x-y)(3x+y)+ (3x+y)2
= ( 3x - y + 3x + y )2
= ( 6x )2
= 36x2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
1, rút gọn
a, (x-3)(x+3)-(x-7)(x+7)
= x^2 - 9 - (x^2 - 49)
= x^2 - 9 - x^2 + 49
= 40
b, (4x-5)2+(3x-2)2-2(4x+5)(3x-2)
= 16x^2 - 40x + 25 + 9x^2 - 12x + 4 - 2(12x^2 - 8x + 15x - 10)
= 25x^2 - 52x + 29 - 24x^2 + 16x - 30x + 20
= x^2 - 66x + 49
c, 2(3x-y)(3x+y)+(3x-y)2+(3x+y)2
= 2(9x^2 - y^2) + 9x^2 - 6xy + y^2 + 9x^2 + 6xy + y^2
= 18x^2 - 2y^2 + 18x^2 + 2y^2
= 36x^2
d, (x-y+z)2+(z-y)2+2(x-y+z+2(x-y+z)(y-z-y+z)(y-z)
= dài vl
b, \(x^2-6x-2=x^2-6x+9-11=\left(x-3\right)^2-\sqrt{11}^2\)
\(=\left(x-3-\sqrt{11}\right)\left(x-3+\sqrt{11}\right)\)
c,\(9x^2+6x-1=\left(3x\right)^2+2.3x+1-2=\left(3x+1\right)^2-\sqrt{2}^2\)
\(=\left(3x+1-\sqrt{2}\right)\left(3x+1+\sqrt{2}\right)\)
d,\(x^8+64=\left(x^4\right)^2+8^2+16x^4-16x^4\)
\(=\left(x^4+8\right)^2-\left(4x^2\right)^2=\left(x^4+4x^2+8\right)\left(x^4-4x^2+8\right)\)
e,\(81x^4+4=\left(9x^2\right)^2+2^2+36x^2-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2+2-6x\right)\left(9x^2+6x+2\right)\)
g,\(x^8+x^7+1\)
\(=\left(x^8+x^7+x^6\right)+\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)-\left(x^6+x^5+x^4\right)-\left(x^3+x^2+x\right)\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)\(\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(D=8\left(7^8+1\right)\left(7^4+1\right)\left(7^2-1\right)\)
\(D=\frac{4}{25}\left(7^2+1\right)\left(7^2-1\right)\left(7^4+1\right)\left(7^8+1\right)\)
\(D=\frac{4}{25}\left(7^4-1\right)\left(7^4+1\right)\left(7^8+1\right)\)
\(D=\frac{4}{25}\left(7^8-1\right)\left(7^8+1\right)\)
\(D=\frac{4}{25}\left(7^{16}-1\right)\)
Vì: \(\frac{4}{25}\left(7^{16}-1\right)< 7^{16}-1\Rightarrow D< C\)