\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};......;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-1\right)n}\)

Ta lại có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{4.5}+.....+\frac{1}{n\left(n-1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}< 1\) (đpcm)

3 tháng 8 2018

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)

\(2A-A=1-\frac{1}{2^{50}}\)

\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1

tương tự nha

3 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)

\(A=1-\frac{1}{2^{50}}< 1\)

    

14 tháng 2 2020

Tui làm được câu 4

21 tháng 12 2017

\(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\)

\(\frac{1}{5}A=\frac{1}{5}\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}\right)=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\)

\(A-\frac{1}{5}A=\frac{4}{5}A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}-\left(\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2013}}\right)\)

\(\frac{4}{5}A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}-\frac{1}{5^2}-\frac{1}{5^3}-...-\frac{1}{5^{2013}}\)

\(\frac{4}{5}A=\frac{1}{5}-\frac{1}{5^{2013}}=\frac{5^{2012}-1}{5^{2013}}\)

\(A=\frac{5^{2012}-1}{5^{2013}}:\frac{4}{5}=\frac{5^{2012}-1}{5^{2013}}\times\frac{5}{4}=\frac{5^{2012}-1}{4.5^{2012}}=\frac{1}{4}-\frac{1}{4.5^{2012}}< \frac{1}{4}\)

2 tháng 1 2019

B= (1/2-1/3) + (1/3-1/4) + (1/4-1/5)+...+( 1/99-1/100)

B = (1/2-1/3) + (1/3 - 1/4) + (1/4 - 1/5)+...+ (1/99 + 1/100)

B= 1/2 +1/100=51/100

k mk nhóe

sai thì chỉ mk nhoa

2 tháng 1 2019

a)A=1/51+1/52+...+1/100

=>A>1/100+1/100+...+1/100

=>A>50/100(vì có 50 số hạng)

=> A>1/2

b)Ta có:

B=1/2.3+1/3.4+...+1/99.100

=> B=1/2-1/3+1/3-1/4+...+1/99-1/100

=> B=1/2-1/100

Mà 1/100>0

=> B<1/2

=> B<1/2<A

=>B<A

31 tháng 5 2016

1.

a.

\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)

\(=\frac{35-21-15}{105}\)

\(=-\frac{1}{105}\)

b.

\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)

\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)

\(=\frac{12-15+10}{20}\)

\(=\frac{7}{20}\)

c.

\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)

\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)

\(=\frac{60-42-35}{105}\)

\(=-\frac{17}{105}\)

2.

a.

\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)

\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

b.

\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)

\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

Chúc bạn học tốtok

 

2: =>2x-1/4=5/6-1/2x

=>5/2x=5/6+1/4=13/12

=>x=13/30

3: =>3x-5/6=2/3-1/2x

=>3,5x=2/3+5/6=4/6+5/6=9/6=3,2

hay x=32/35

28 tháng 12 2016

\(A=\frac{1}{\left(2n\right)^2}< \frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)=B\)

2B=1-1/(2n+1)

B=1/2-1/{2.(2n+1)Ư

KL A<1/2

8 tháng 1 2017

Câu hỏi hay đó nhưng mình ko biết cách làm