K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

lấy vế đầu trừ vế sau nếu kết quả dương suy ra vế đầu lớn hơn nếu kq âm thì vế sau lớn hơn

17 tháng 6 2017

\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}\)\(=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\sqrt{2005}-\sqrt{2004}=\frac{\left(\sqrt{2005}-\sqrt{2004}\right)\left(\sqrt{2005}+\sqrt{2004}\right)}{\sqrt{2005}+\sqrt{2004}}\)\(=\frac{1}{\sqrt{2005}+\sqrt{2004}}\)

ta lại có 2006>2005\(\Rightarrow\sqrt{2006}>\sqrt{2005}\)có 2005>2004\(\Rightarrow\sqrt{2005}>\sqrt{2004}\)

\(\Rightarrow\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}< \frac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\Rightarrow\sqrt{2006}-\sqrt{2005}>\sqrt{2005}-\sqrt{2004}\)

6 tháng 1 2018

hihi cho mình đi

7 tháng 8 2017

\(\sqrt{2006+2\sqrt{2005}}-\sqrt{2006-2\sqrt{2005}}\)

\(=\sqrt{\left(\sqrt{2005}+1\right)^2}-\sqrt{\left(\sqrt{2005}-1\right)^2}\)

\(=\left(\sqrt{2005}+1\right)-\left(\sqrt{2005}-1\right)\)

= 2

M = \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(\Rightarrow\sqrt{2}M\)\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)\)

= - 2

\(\Rightarrow M=-\sqrt{2}\)

13 tháng 8 2017

Easy

Ta có:

\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)

Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)

\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)

13 tháng 8 2017

Easy

Ta có:

\(\sqrt{2006}-\sqrt{2005}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

Tương tự cũng có: \(\frac{1}{\sqrt{2007}+\sqrt{2008}}\)

Dễ thấy: \(\sqrt{2005}+\sqrt{2006}< \sqrt{2007}+\sqrt{2008}\)

\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2008}}\)

12 tháng 9 2016

Ta có : \(\sqrt{2006}-\sqrt{2005}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

             \(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)

Mà : \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}-\sqrt{2006}}\)

Nến : \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)

\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)

 

\(\left(\sqrt{2005}+\sqrt{2007}\right)^2=4012+2\sqrt{2005.2007}\)

\(=4012+2\sqrt{\left(2016-1\right)\left(2016+1\right)}=4012+2\sqrt{2016^2-1}\)

\(\left(2\sqrt{2006}\right)^2=4012+4012=4012+2\sqrt{2016^2}\)

=>\(\left(\sqrt{2015}+\sqrt{2017}\right)^2< \left(2\sqrt{2016}\right)^2\Rightarrow\sqrt{2015}+\sqrt{2017}< 2\sqrt{2016}\)

7 tháng 7 2016

Ta có: \(\sqrt{2006}-\sqrt{2005}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)

Mà: \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2006}}\)

Nên: \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)

=>\(\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)