K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

có 3 trường hợp xảy ra. 

TH1: nếu \(a=b\Rightarrow a^n=b^n\)

TH2: nếu \(a>b\Rightarrow a^n>b^n\)

TH3: nếu \(a< b\Rightarrow a^n< b^n\)

 k mk nha.

#ngố

Nếu a > b thì an > bn ( n khác 0 )

Nếu a < b thì an < b( n khác 0 )

Nếu a = b thì an = bn ( n khác 0 )

11 tháng 3 2016

=935 nhe bé

9 tháng 4 2017

a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)

=> \(\frac{a+n}{b+n}>\frac{a}{b}\)

Với b>a thì chứng minh tương tự ta được \(\frac{a+n}{b+n}< \frac{a}{b}\)

Với a=b thì chứng minh tương tự ta được \(\frac{a+n}{b+n}=\frac{a}{b}\)

9 tháng 4 2017

cho \(A=\frac{10^{11}-1}{10^{12}-1}\) và \(B=\frac{10^{10}+1}{10^{11}+1}\)

          giải

Ta có 

\(A=\frac{10^{11}-1}{10^{12}-1}\)

\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)

\(B=\frac{10^{10}+1}{10^{11}+1}\)

\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)

VÌ 10.B > 1  và 10.A < 1 

=>  10.B > 10.A 

=> B > A

vậy A < B

16 tháng 10 2015

227=(23)9=89

318=(32)9=99

vì 8<9  =>89<99

=>227<318

9 tháng 6 2015

ta có A=\(\frac{10}{a^m}+\frac{10}{a^n}\)=\(\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)

B=\(\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{1}{a^m}+\frac{9}{a^n}\)

do \(\frac{10}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}\)nên để so sánh A và B ta đi so sánh \(\frac{1}{a^n}\)và \(\frac{1}{a^n}\)

xét 2 trường hợp

th1) m=n => \(\frac{1}{a^m}=\frac{1}{a^n}\)=>A=B

th2) m>n=>\(\frac{1}{a^m}<\frac{1}{a^n}\)=>A>B

th3) m<n=>\(\frac{1}{a^m}>\frac{1}{a^n}\)=>A<B

26 tháng 1 2016

xin lỗi mình mới học lớp 5

26 tháng 1 2016

Câu A bạn nhấp vào trang này nhé http://olm.vn/hoi-dap/question/100062.html