Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)
\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)
\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)
\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)
\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))
a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne9\end{cases}}\)
\(C=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(\Leftrightarrow C=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{9-x}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{x-3\sqrt{x}}\)
\(\Leftrightarrow C=\frac{3\sqrt{x}+9}{9-x}:\frac{2\sqrt{x}+4}{x-3\sqrt{x}}\)
\(\Leftrightarrow C=\frac{3}{3-\sqrt{x}}\cdot\frac{x-3\sqrt{x}}{2\sqrt{x}+4}\)
\(\Leftrightarrow C=\frac{-3}{2\sqrt{x}+4}\)
b) Để \(-\frac{3}{2\sqrt{x}+4}< -1\)
\(\Leftrightarrow\frac{1+2\sqrt{x}}{2\sqrt{x}+4}< 0\)
Vì \(\hept{\begin{cases}1+2\sqrt{x}>0\\2\sqrt{x}+4>0\end{cases}\Leftrightarrow C>0}\)
Vậy để C <-1 <=> \(x\in\varnothing\)
c) \(A=\frac{1}{\sqrt{3}-\sqrt{2}}=\sqrt{3}+\sqrt{2}\)
\(\Leftrightarrow A^2=3+2+2\sqrt{5}=5+2\sqrt{5}\)
\(B=\sqrt{5}+1\)
\(\Leftrightarrow B^2=5+1+2\sqrt{5}=6+2\sqrt{5}\)
Vì \(5+2\sqrt{5}< 6+2\sqrt{5}\)
\(\Leftrightarrow A^2< B^2\)
\(\Leftrightarrow A< B\)
Vậy \(\frac{1}{\sqrt{3}-\sqrt{2}}< \sqrt{5}+1\)
\(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)(ĐK: \(x\ge0,x\ne1\))
\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
\(A=\frac{5}{\sqrt{x}}\)
\(\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}=\frac{5}{\sqrt{x}}\)
\(\Rightarrow x=5\left(x+\sqrt{x}+1\right)\)
\(\Leftrightarrow4x+5\sqrt{x}+1=0\)(vô nghiệm do \(x\ge0\))
\(A-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)
\(=\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)(vì \(x\ne1\))
Do đó \(A< \frac{1}{3}\).
\(ĐKXĐ:x\ne1;x\ne0\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{2x-2\sqrt{x}}{2x+2\sqrt{x}}\)
\(N=\frac{\sqrt{x}-3}{2\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)2\sqrt{x}}=\frac{x-2\sqrt{x}-3}{2x+2\sqrt{x}}\)
Ta có :
\(x\ge0>-3\)
\(\Leftrightarrow x>-3\)
\(\Leftrightarrow x+\left(x-2\sqrt{x}\right)>-3+\left(x-2\sqrt{x}\right)\)
\(\Leftrightarrow2x-2\sqrt{x}>x-2\sqrt{x}-3\)
\(\Leftrightarrow\frac{2x-2\sqrt{x}}{2x+2\sqrt{x}}>\frac{x-2\sqrt{x}-3}{2x+2\sqrt{x}}\)
\(\Leftrightarrow A>N\)