K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

A<B nhé bạn

11 tháng 3 2017

ban ko viet loi giai a

7 tháng 8 2017

\(\frac{45}{87}\)>\(\frac{23}{76}\)

43535<53455

k1 mình nha

7 tháng 8 2017

\(\frac{46}{87}>\frac{23}{76}\)

\(43535< 53455\)

Ủng hộ nha mọi người

19 tháng 4 2019

Nhân 79 vào cả hai vế rồi tự làm

19 tháng 4 2019

LÀm đỡ mk tí mk ko có nhiều tgian vi còn 5 đề nữa

26 tháng 4 2016

Xét B=\(\frac{2001+2000}{2001+2002}\)

    B=\(\frac{2001}{2001+2002}+\frac{2000}{2001+2002}\)

    Ta thấy \(\frac{2001}{2002}>\frac{2001}{2001+2002}\)

             \(\frac{2000}{2001}>\frac{2000}{2001+2002}\)

A>B.Vậy A>B
Nhớ k nha

26 tháng 4 2016

Ta có: 2000/2001>1/2 ;  2001/2002>1/2

=>A=1/2+1/2=1=>A>1

B=2000+2001/2001+2002=4001/4003<1

A>1;B<1

=>A>B

Vậy A>B

đây mà gọi là toán lớp 1 hả trời ??????????????????????

6 tháng 3 2019

bn lên mạng hoặc vào câu hỏi tương tự nha!

chúc bn hok tốt!

hahaha!

#conmeo#

28 tháng 12 2017

thế mà bảo toán lớp 1 

29 tháng 12 2017

Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)

mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)

=>\(M\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c

27 tháng 2 2020

:33 Phương pháp SOS e chưa học và đọc :)) E làm các pp khác nhá anh :33

Cách 1 :Đặt : \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Cách 2 : ( Kĩ thuật điểm rơi ) : Cộng 3 vào hai vế của BĐT rồi sử dụng AM - GM

Cách 3 : Nhân cả hai vế của BĐT với a+b+c

Cách 4 : Kĩ thuật đặt ẩn phụ ( Đặt a+b=x, b+c=y,c+a=z )

27 tháng 2 2020

Dùng phương pháp SOS :

Ta có : \(\sum_{} \) \(\frac{a}{b+c}-\frac{3}{2}\)\(\sum_{} \)\(\frac{\left(a-b\right)^2}{2\left(a+c\right)\left(b+c\right)}\ge0\) (1)

Vì a,b,c dương nên BĐT (1) đúng.

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

29 tháng 7 2020

dễ mà ? 

Theo BĐT Cauchy cho 2 số ta có :

\(b^2+c^2\ge2bc< =>\frac{a^2}{b^2+c^2}\le\frac{a^3}{2abc}\)

Tương tự ta được :\(\frac{b^2}{c^2+a^2}\le\frac{b^3}{2abc}\) ; \(\frac{c^2}{a^2+b^2}\le\frac{c^3}{2abc}\)

Cộng theo vế các bất đẳng thức cùng chiều :

\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Vậy ta có điều phải chứng minh