K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Ta có :

\(\frac{2014^{2015}+1}{2014^{2015}+1}\)\(=1\)

\(\frac{2014^{2014}+1}{2014^{2013}+1}\)\(>1\)

\(\Rightarrow A< B\)

Vậy \(A< B\)

1 tháng 7 2016

Sai rồi nhé bạn 

1 tháng 7 2016

trà my Thế bạn làm thế nào

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

19 tháng 6 2016

Có \(2004A=\frac{2014^{2015}+2014}{2014^{2015}+1}=\frac{2014^{2015}+1+2013}{2014^{2015}+1}=1+\frac{2013}{2014^{2015}+1}\)

 \(2014B=\frac{2014^{2014}+2014}{2014^{2014}+1}=\frac{2014^{2014}+1+2013}{2014^{2014}+1}=1+\frac{2013}{2014^{2014}+1}\)

 Vì \(\frac{2013}{2014^{2015}+1}< \frac{2013}{2014^{2014}+1}\)

=> \(1+\frac{2013}{2014^{2015}+1}< 1+\frac{2013}{2014^{2014}+1}\)

=> \(A< B\)

19 tháng 2 2022

SDFGHJI

13 tháng 2 2018

A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)

B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)

Rồi bạn tự so sánh nha

8 tháng 11 2015

\(B-1=\frac{2015^{2014}+1}{2015^{2013}+1}-1=\frac{2015^{2015}+2015}{2015^{2014}+2015}-1=\frac{2015^{2015}-2015^{2014}}{2015^{2014}+2015}\)

\(A-1=\frac{2015^{2015}+1}{2015^{2014}+1}-1=\frac{2015^{ }^{2015}-2015^{2014}}{2015^{2014}+1}\)

=> A- 1 > B- 1 => A>B

Câu b) Làm tương tự bạn nhé

22 tháng 2 2016

nhân cả tử và mẫu của B với 10

=> A>B

29 tháng 4 2016

nhận cả tử và mẫu với 10

=>A > B