K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 9

Lời giải:

$A=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}=\frac{20^{10}-1}{20^{10}-3}=B$

Vậy $A< B$

25 tháng 4 2019

\(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

\(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

\(20^{10}-1>20^{10}-3\Rightarrow\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\)

=> A < B

10 tháng 5 2018

ta thấy B>1 nên B=\(\frac{20^{10}-1}{20^{10}-3}\)>\(\frac{20^{10}-1+2}{20^{100}-3+2}\)=\(\frac{20^{10}+1}{20^{10}-1}\)=A

vậy B>A

nếu ko hiểu thì tham khảo trong SBT lớp 6 bài so sánh PS ấy

27 tháng 4 2017

Vì \(20^{10}-1>20^{10}-3\)

\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-3+2}=\frac{20^{10}+1}{20^{10}-1}=A\)

vậy \(A< B\)

22 tháng 4 2018

Ta co B>1

=>A=20^10+1​'20^10-1<20^10+1/2010-3+1

=>A<20^10+1/20^10-3+1

=>A<20^10-1/20^10-3

=>A<B

Vậy A<B

23 tháng 5 2018

ta có :

A=\(\frac{20^{10}+1}{20^{10}-1}=1\frac{2}{20^{10}-1}\) (1)

B=\(\frac{20^{10}-1}{20^{10}-3}=1\frac{2}{20^{10}-3}\) (2)

từ (1) và (2) =>A>B (cùng tử ,phân số nào có mẫu lớn hơn)

                     vậy A  > B

tk mik nha

23 tháng 5 2018

B = 2010 - 1 / 2010 - 3 > 1

=>  B > 2010  - 1 + 2 / 2010 - 3 + 2 = 2010 + 1 / 2010 - 1 = A

=> B > A

16 tháng 4 2017

Ta có:

\(A=\frac{20^{10}+1}{20^{10}-1}=1\)

\(B=\frac{20^{10}-1}{20^{10}-3}=1\)

Vậy A và B bằng nhau

16 tháng 4 2017

Tính A và B rồi ta so sánh:

A = \(\frac{20^{10}+1}{20^{10}-1}\) = \(1\)

B = \(\frac{20^{10}-1}{20^{10}-3}\) = \(1\)

Mà \(1\) = \(1\)

Nên: A = B

24 tháng 7 2020

a) Ta có : 10A = \(\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}=\frac{10^{2005}+10}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\)

Lại có 10B = \(\frac{10\left(10^{2005}+1\right)}{10^{2006}+1}=\frac{10^{2006}+10}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)

Vì \(\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)

=> 10A > 10B 

=> A > B

b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

Lại có B = \(\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1-\frac{2}{20^{10}-3}\) 

=> A < B

24 tháng 7 2020

Cảm ơn bạn rất nhiều nha

29 tháng 4 2017

\(20^{10}-1>20^{10}-3\)

\(\Rightarrow B=\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-1+2}=\frac{20^{10}+1}{20^{10}-1}=A\)

\(\Rightarrow A< B\)
 

29 tháng 4 2017

Ta có : \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{\left(20^{10}-1\right)+2}{20^{10}-1}\)

           \(B=\frac{20^{10}-1}{20^{10}-3}=\frac{\left(20^{10}-3\right)+2}{20^{10}-3}\)

\(A=\frac{20^{10}-1}{20^{10}-1}+\frac{2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

\(B=\frac{20^{10}-1}{20^{10}-3}+\frac{2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Do : \(20^{10}-1>20^{10}-3\)

\(\Rightarrow\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)

Vậy : \(A< B\)