\(\frac{2009x2010-1}{2009x2010}\) và B=\(\frac{2010x201...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

\(\text{ta có : }A=\frac{2009.2010-1}{2009.2010}=\frac{2009.2010}{2009.2010}-\frac{1}{2009.2010}=1-\frac{1}{2009.2010}\)

\(B=\frac{2010.2011-1}{2010.2011}=\frac{2010.2011}{2010.2011}-\frac{1}{2010.2011}=1-\frac{1}{2010.2011}\)

\(\text{Vì }2009.2010<2010.2011\text{ nên }\frac{1}{2009.2010}>\frac{1}{2010.2011}\)

Hay A<B

28 tháng 5 2018

a) Ta có: a < b => a + 1 < b + 1

b) Ta có: a < b => a - 2 < b - 2

26 tháng 2 2020

\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot...\left(\frac{1}{10}-1\right)\)

\(A=\left(\frac{1}{2}-\frac{2}{2}\right)\left(\frac{1}{3}-\frac{3}{3}\right)\cdot...\cdot\left(\frac{1}{10}-\frac{10}{10}\right)\)

\(A=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{9}{10}\right)\)

\(A=\frac{-1}{2}\cdot\frac{-2}{3}\cdot...\cdot\frac{-9}{10}\)

\(A=\frac{\left(-1\right)\cdot\left(-2\right)\cdot...\cdot\left(-9\right)}{2\cdot3\cdot...\cdot10}\)

\(A=\frac{\left(-1\right)\cdot2\cdot...\cdot9}{2\cdot3\cdot...\cdot10}=\frac{-1}{10}\)

Mà \(\frac{-1}{10}>\frac{-1}{9}\)nên A > -1/9

Phần cuối tương tự

2 tháng 1 2019

B= (1/2-1/3) + (1/3-1/4) + (1/4-1/5)+...+( 1/99-1/100)

B = (1/2-1/3) + (1/3 - 1/4) + (1/4 - 1/5)+...+ (1/99 + 1/100)

B= 1/2 +1/100=51/100

k mk nhóe

sai thì chỉ mk nhoa

2 tháng 1 2019

a)A=1/51+1/52+...+1/100

=>A>1/100+1/100+...+1/100

=>A>50/100(vì có 50 số hạng)

=> A>1/2

b)Ta có:

B=1/2.3+1/3.4+...+1/99.100

=> B=1/2-1/3+1/3-1/4+...+1/99-1/100

=> B=1/2-1/100

Mà 1/100>0

=> B<1/2

=> B<1/2<A

=>B<A

21 tháng 9 2020

a) Ta có : \(31^5< 32^5=\left(2^5\right)^5=2^{25}< 2^{28}=\left(2^4\right)^7=16^7< 17^7\)

\(\Rightarrow31^5< 17^7\)

b) Ta có : \(8^{12}=\left(2^3\right)^{12}=2^{36}>2^{32}=\left(2^4\right)^8=16^8>12^8\)

\(\Rightarrow8^{12}>12^8\)

c)  \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{99}\)

\(A=\frac{1-\frac{1}{99}}{2}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

a) \(31^5< 34^5=2^5.17^5=32.17^5\)

\(17^7=17^2.17^5=289.17^5\)

\(\Rightarrow31^5< 17^7\)

b) \(12^8< 16^8=\left(2^4\right)^8=2^{32}\)

\(8^{12}=\left(2^3\right)^{12}=2^{36}\)

\(\Rightarrow8^{12}>12^8\)

c) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3A-A=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)-\frac{1}{3^{99}}\)

\(\Rightarrow2A=1-\frac{1}{3^{99}}< 1\Rightarrow A< \frac{1}{2}\)

27 tháng 6 2018

\(\frac{a-1}{a}=1-\frac{1}{a}\)

\(\frac{b+1}{b}=1+\frac{1}{b}\)

Áp dụng tính chất bắc cầu ta được :

   \(1-\frac{1}{a}< 1< 1+\frac{1}{b}\)

=> \(\frac{a-1}{a}< \frac{b+1}{b}\)

27 tháng 6 2018

Ta có:

+ Vì \(a-1< a\Rightarrow\frac{a-1}{a}< \frac{a}{a}=1\)( 1 )

+ Vì \(b+1>b\Rightarrow\frac{b+1}{b}>\frac{b}{b}=1\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a-1}{a}< \frac{b+1}{b}\)

Vậy \(\frac{a-1}{a}< \frac{b+1}{b}.\)

26 tháng 8 2020

a) Ta có : \(\frac{-60}{12}=-5=-\frac{25}{5}\)

\(-0,8=-\frac{8}{10}=-\frac{4}{5}\)

Mà -25 < -4 nên \(\frac{-25}{5}< \frac{-4}{5}\)=> \(\frac{-60}{12}< -0,8\)

b) Ta có : \(\frac{2020}{2019}=1+\frac{1}{2019}\)

\(\frac{2021}{2020}=1+\frac{1}{2020}\)

Vì \(\frac{1}{2019}>\frac{1}{2020}\)nên \(\frac{2020}{2019}>\frac{2021}{2020}\)

c) \(\frac{10^{2018}+1}{10^{2019}+1}=\frac{10\left(10^{2018}+1\right)}{10^{2019}+1}=\frac{10^{2019}+10}{10^{2019}+1}=\frac{10^{2019}+1+9}{10^{2019}+1}=1+\frac{9}{10^{2019}+1}\)(1)

\(\frac{10^{2019}+1}{10^{2020}+1}=\frac{10\left(10^{2019}+1\right)}{10^{2020}+1}=\frac{10^{2020}+10}{10^{2020}+1}=\frac{10^{2020}+1+9}{10^{2020}+1}=1+\frac{9}{10^{2020}+1}\)(2)

Đến đây tự so sánh rồi nhé

2 tháng 8 2017

Ta có : \(\frac{x+1}{5}=\frac{x-2}{4}\)

=> 4(x + 1) = 5(x - 2)

=> 4x + 4 = 5x - 10

=> 4x - 5x = -10 - 4

=> -x = -14

=> x = 14

Thay x = 14 vào ta có : \(\frac{14-2}{4}=\frac{5y+1}{28}\Rightarrow\frac{84}{28}=\frac{5y+1}{28}\)

=> 5y + 1 = 84

=> 5y = 83

=> y = 83/5 

28 tháng 12 2018

Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)

28 tháng 12 2018

Ta có:

\(1-\frac{a}{b}=\frac{b-a}{b}\)

\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)

Vì b < b + 1 và a < b; a, b nguyên dương  => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)

Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)

\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)

Áp dụng chứng minh tương tự nhé bạn