Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Coi \(A=\frac{10}{a^m}+\frac{10}{a^n}=\frac{9}{a^m}+\frac{10}{a^n}+\frac{1}{a^m}\)
\(B=\frac{9}{a^m}+\frac{11}{a^n}=\frac{9}{a^m}+\frac{10}{a^n}+\frac{1}{a^n}\)
Cả A và B đều có: \(\frac{9}{a^m}+\frac{10}{a^n}\) nên ta so sánh \(\frac{1}{a^n}\)và\(\frac{1}{a^m}\)
TH1: n<m =>1/n>1/m
=>B>A
TH2:n>m=>1/n<1/m
=>B<A
TH3: m=n =>1/m=1/n
=> B=A
\(\frac{10}{a^m}+\frac{10}{a^n}=\left(\frac{9}{a^m}+\frac{10}{a^n}\right)+\frac{1}{a^m}\)
\(\frac{9}{a^m}+\frac{11}{a^n}=\left(\frac{9}{a^m}+\frac{10}{a^n}\right)+\frac{1}{a^n}\)
Muốn so sách 2 biểu thức trên ta chỉ cần so sánh \(\frac{1}{a^m}\) với \(\frac{1}{a^n}\)
Trường hợp 1: a=1 thì 2 biểu thức trên = nhau
Trường hợp 2: a khác 1 thì xét m và n
-Nếu m=n thì am=an => 2 biểu thức trên = nhau
-Nếu m<n thì am<an => \(\frac{1}{a^m}>\frac{1}{a^n}\)=> .....
-Nếu m>N thì am>an => \(\frac{1}{a^m}<\frac{1}{a^n}\)=> ......
Dễ mà, bài này trên lớp cậu đã hỏi mình đâu ?
Giải
A = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^n}\) ; B = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^m}\)
Muốn so sánh A với B chỉ cần so sánh \(\frac{1}{a^m}\) và \(\frac{1}{a^n}\)
Xét các trường hợp:
TH1: a = 1 thì am=an do đó A=B
TH2: a \(\ne\) 1 thì xét m và n
- Nếu m = n thì am = an do đó A=B
- Nếu m < n thì am < an do đó \(\frac{1}{a^m}\) > \(\frac{1}{a^n}\) ; vậy A<B
- Nếu m > n thì am > an do đó \(\frac{1}{a^m}\) < \(\frac{1}{a^n}\) ; vậy A>B
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
\(B-A=\frac{11-10}{a^m}+\frac{9-10}{a^n}=\frac{1}{a^m}-\frac{1}{a^n}\)
Nếu \(m>n\) thì \(\frac{1}{a^m}-\frac{1}{a^n}< 0\Rightarrow B< A\)
Nếu \(m< n\) thì \(\frac{1}{a^m}-\frac{1}{a^n}>0\Rightarrow B>A\)
B,
(1 - x-1/2011)+(1 - x-2/2012)+(1 - x-3/2013)=(1 - x-4/2014)+(1 - x-5/2015)+(1 - x-6/2016)
=> 2010-x/2011 + 2010-x/2012 + 2010-x/2013 = 2010-x/2014 + 2010-x/2015 + 2010-x/2016
=> 2010-x/2011 + 2010-x/2012 + 2010-x/2013 - 2010-x/2014 - 2010-x/2015 - 2010-x/2016=0
=>(2010-x).(1/2011 + 1/2012 + 1/2013 + 1/2014 - 1/2015 - 1/2016)=0
Mà: 1/2011 + 1/2012 + 1/2013 + 1/2014 - 1/2015 - 1/2016 khác 0
=> 2010-x=0
=>x=2010
a, 10/a^m > 11/a^m; 10/a^n > 9/a^n => A > B
b, bạn cộng 1 vào các phân số đưa VP qua VT đặt nhân tử chung x + 2010 thì trong ngoặc còn lại là số dương nên x + 2010 = 0
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT