Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì :
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
hay A > B
Vậy A > B
Giải:
Ta có:
A=20092008+1/20092009+1
2009A=20092009+2009/20092009+1
2009A=20092009+1+2008/20092009+1
2009A=20092009+1/20092009+1 + 2008/20092009+1
2009A=1+2008/20092009+1
Tương tự:
B=20092009+1/20092010+1
2009B=1+2008/20092010+1
Vì 2008/20092009+1 > 2008/20092010+1 nên 2009A>2009B
⇒A>B
\(B=\dfrac{2008+2009+2010}{2009+2010+2011}=\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)Ta có : \(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)\(=>\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)
Hay A > B
ta có A = 2008^2009+2 / 2008^2009-1 = 2008^2009-1+3 / 2008^2009-1 = 1 + 3/2008^2009-1
lại có B = 2008^2009 / 2008^2009-3 = 2008^2009-3+3 / 2008^2009-3 = 1 + 3/2008^2009-3
vì 3/2008^2009-1 < 3/2008^2009-3 => 1 + 3/2008^2009-1 < 1 + 3/2008^2009-3
Hay A<B
Vậy A<B
Đặt \(A=\dfrac{2009^{2008}+1}{2009^{2009}+1}\) và \(B=\dfrac{2009^{2007}+1}{2009^{2008}+1}\)
Ta có:
\(2009A=\dfrac{2009.\left(2009^{2008}+1\right)}{2009^{2009}+1}=\dfrac{2009^{2009}+2009}{2009^{2009}+1}\)
\(=\dfrac{2009^{2009}+1+2008}{2009^{2009}+1}=\dfrac{2009^{2009}+1}{2009^{2009}+1}+\dfrac{2008}{2009^{2009}+1}\)
\(=1+\dfrac{1}{2009^{2009}+1}\)
\(2009B=\dfrac{2009.\left(2009^{2007}+1\right)}{2009^{2008}+1}=\dfrac{2009^{2008}+2009}{2009^{2008}+1}\)
\(=\dfrac{2008^{2008}+1+2008}{2009^{2008}+1}=\dfrac{2008^{2008}+1}{2009^{2008}+1}+\dfrac{2008}{2009^{2008}+1}\)
\(=1+\dfrac{2008}{2009^{2008}+1}\)
Vì \(1+\dfrac{2008}{2009^{2009}+1}< 1+\dfrac{2008}{2009^{2008}+1}\)
Nên \(10A< 10B\) \(\Rightarrow A< B\)
Vậy \(\dfrac{2009^{2008}+1}{2009^{2009}+1}< \dfrac{2009^{2007}+1}{2009^{2008}+1}\)
~ Học tốt ~
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(A=\dfrac{2009^{2008}+1}{2009^{2009}+1}< 1\)
\(\Rightarrow A< \dfrac{2009^{2008}+1+2008}{2009^{2009}+1+2008}\Rightarrow A< \dfrac{2009^{2008}+2009}{2009^{2009}+2009}\Rightarrow A< \dfrac{2009\left(2009^{2007}+1\right)}{2009\left(2009^{2008}+1\right)}\Rightarrow A< \dfrac{2009^{2007}+1}{2009^{2008}+1}=B\)\(\Rightarrow A< B\)
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
ta có: \(A=\dfrac{2008^{2009}+2}{2008^{2009}-1}=\dfrac{2008^{2009}-1+3}{2008^{2009}-1}=1+\dfrac{3}{2008^{2009}-1}\)
B=\(\dfrac{2008^{2009}}{2008^{2009}-3}=\dfrac{2008^{2009}-3+3}{2008^{2009}-3}=1+\dfrac{3}{2008^{2009}-3}\)
ta thấy: \(1+\dfrac{3}{2008^{2009}-1}\)<\(1+\dfrac{3}{2008^{2009}-3}\)
vậy A<B