\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2023

Ta có :22A=1+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+...+\(\dfrac{1}{n^2}\)

            22A-A=1-\(\dfrac{1}{\left(2n\right)^2}\)

            3A=\(\dfrac{\left(2n\right)^2-1}{\left(2n\right)^2}\) <\(\dfrac{n^2}{\left(2n\right)^2}\)=\(\dfrac{1}{2}\)

          3A<\(\dfrac{1}{2}\) suy ra A<\(\dfrac{1}{2}\)

6 tháng 4 2023

A   = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+\(\dfrac{1}{\left(2.n\right)^2}\)

A  =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{\left(2.2\right)^2}\)\(\dfrac{1}{\left(2.3\right)^2}\) +....+\(\dfrac{1}{\left(2.n\right)^2}\)

A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^2.2^2}\) + \(\dfrac{1}{2^2.3^2}\)+......+ \(\dfrac{1}{2^2.n^2}\)

A = \(\dfrac{1}{2^2}\) \(\times\) ( 1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+.......+ \(\dfrac{1}{n^2}\))

22 \(\times\) A = 1 + \(\dfrac{1}{2^2}\)\(\dfrac{1}{3^2}\)+......+\(\dfrac{1}{n^2}\)

     4A =  1 + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) +......+ \(\dfrac{1}{n^2}\)

     4A = 1 + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ...+\(\dfrac{1}{n.n}\)

       1   = 1

     \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)

      \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\)

     ...................

 \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right).n}\)

Cộng vế với vế ta có: 

4A = 1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+....+\(\dfrac{1}{n.n}\) <1+ \(\dfrac{1}{1.2}\)\(\dfrac{1}{2.3}\)+ ......+ \(\dfrac{1}{\left(n-1\right).n}\)

4A < 1+ \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+....+\(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\) = 2 - \(\dfrac{1}{n}\)

A < ( 2 - \(\dfrac{1}{n}\)): 4 

A < 2 : 4 - \(\dfrac{1}{n}\) : 4

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\)

Vậy A < \(\dfrac{1}{2}\) 

 

 

18 tháng 9 2017

a/ Ta có :

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...........+\dfrac{1}{n^2}\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

.......................

\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...........+\dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..........+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\Leftrightarrow A< 1-\dfrac{1}{n}< 1\)

\(\Leftrightarrow A< 1\)

b/ Ta có :

\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+.................+\dfrac{1}{\left(2n\right)^2}\)

\(=\dfrac{1}{4}\left(1+\dfrac{1}{2^2}+\dfrac{1}{4^2}+..........+\dfrac{1}{n^2}\right)\)

Ta thấy :

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

..................

\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+.........+\dfrac{1}{\left(n-1\right)n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{4}\left(1+1-\dfrac{1}{n}\right)\)

\(\Leftrightarrow B< \dfrac{1}{2}-\dfrac{1}{4n}< \dfrac{1}{2}\)

\(\Leftrightarrow B< \dfrac{1}{2}\)

19 tháng 9 2017

\(\)\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(A< 1-\dfrac{1}{n}< 1\)

\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2n^2}\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)

\(B=\dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2n^2}\right)\)

\(B< \dfrac{1}{4}+\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+.....+\dfrac{1}{\left(n-1\right)n}\right)\)

8 tháng 9 2017

Bài 1:

a, \(\left(x-2\right)^2=9\)

\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)

b, \(\left(3x-1\right)^3=-8\)

\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)

\(\Rightarrow x=-\dfrac{1}{3}\)

c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)

\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)

\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)

d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)

\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)

\(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)

e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)

\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)

f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\)\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!
24 tháng 4 2017

cho minh xin yeu cau de bai

26 tháng 4 2017

trả hiểu yêu cầu đề bài là j cả

2 tháng 5 2017

a) \(\left(2x-3\right)\left(6-2x\right)=0\)

\(\circledast\)TH1: \(2x-3=0\\ 2x=0+3\\ 2x=3\\ x=\dfrac{3}{2}\)

\(\circledast\)TH2: \(6-2x=0\\ 2x=6-0\\ 2x=6\\ x=\dfrac{6}{2}=3\)

Vậy \(x\in\left\{\dfrac{3}{2};3\right\}\).

b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)

\(\dfrac{1}{3}x=0-\dfrac{2}{5}\left(x-1\right)\)

\(\dfrac{1}{3}x=-\dfrac{2}{5}\left(x-1\right)\)

\(-\dfrac{2}{5}-\dfrac{1}{3}=-x\left(x-1\right)\)

\(-\dfrac{11}{15}=-x\left(x-1\right)\)

\(\Rightarrow x=1.491631652\)

Vậy \(x=1.491631652\)

c) \(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)

\(\circledast\)TH1: \(3x-1=0\\ 3x=0+1\\ 3x=1\\ x=\dfrac{1}{3}\)

\(\circledast\)TH2: \(-\dfrac{1}{2}x+5=0\\ -\dfrac{1}{2}x=0-5\\ -\dfrac{1}{2}x=-5\\ x=-5:-\dfrac{1}{2}\\ x=10\)

Vậy \(x\in\left\{\dfrac{1}{3};10\right\}\).

d) \(\dfrac{x}{5}=\dfrac{2}{3}\\ x=\dfrac{5\cdot2}{3}\\ x=\dfrac{10}{3}\)

Vậy \(x=\dfrac{10}{3}\).

e) \(\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\\ \)

\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{1}{2}\)

\(\dfrac{x}{3}=\dfrac{7}{10}\)

\(x=\dfrac{3\cdot7}{10}\)

\(x=\dfrac{21}{10}\)

Vậy \(x=\dfrac{21}{10}\).

f) \(\dfrac{x}{5}-\dfrac{1}{2}=\dfrac{6}{10}\)

\(\dfrac{x}{5}=\dfrac{6}{10}+\dfrac{1}{2}\)

\(\dfrac{x}{5}=\dfrac{11}{10}\)

\(x=\dfrac{5\cdot11}{10}\)

\(x=\dfrac{55}{10}=\dfrac{11}{2}\)

Vậy \(x=\dfrac{11}{2}\).

g) \(\dfrac{x+3}{15}=\dfrac{1}{3}\\ x+3=\dfrac{15}{3}=5\\ x=5-3\\ x=2\)

Vậy \(x=2\).

h) \(\dfrac{x-12}{4}=\dfrac{1}{2}\\ x-12=\dfrac{4}{2}=2\\ x=2+12\\ x=14\)

Vậy \(x=14\).

27 tháng 12 2017

Viết thành lũy thừa các tích sau:

\(1,\left(\dfrac{1}{2}\right)^6\)

2, \(\left(1\dfrac{1}{2}\right)^3\)

3, \(\left(\dfrac{-3x}{5}\right)^4\)

Chúc bạn học tốt!!!

21 tháng 7 2018

\(a)\left(2\dfrac{5}{6}+1\dfrac{4}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{1}{2}\right)\)

\(=\left(\dfrac{17}{6}+\dfrac{13}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{6}{12}\right)\)

\(=\left(\dfrac{153}{54}+\dfrac{78}{54}\right):\left(1\dfrac{-5}{12}\right)\)

\(=\dfrac{231}{54}:\dfrac{7}{12}\)

\(=\dfrac{198}{27}\)

21 tháng 7 2018

\(b)\dfrac{0,8\left(\dfrac{4}{5}:1,25\right)}{0,64-\dfrac{1}{25}}\)

\(=\dfrac{0,8\left(0,8:1,25\right)}{0,64-0,04}\)

\(=\dfrac{0,8.0,64}{0,6}\)

\(=\dfrac{0,512}{0,6}\)\(=\dfrac{64}{75}\)

6 tháng 4 2017

a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)

\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)

6 tháng 5 2018

\(\dfrac{1}{7}=\dfrac{8}{-x}\)=> \(-x=56\)

=> \(x=56\)

2) => 18x = 18

=> x = 1

3) \(\dfrac{-4}{3}+x=\dfrac{-11}{6}\)

=> \(x=\dfrac{-11}{6}+\dfrac{4}{3}\)

=> \(x=\dfrac{-1}{2}\)

4) 45%.x =\(\dfrac{3}{5}\)

=> \(x=\dfrac{3}{5}:\dfrac{9}{20}\)

=> \(x=\dfrac{4}{3}\)

30 tháng 3 2017

a) \(5\dfrac{3}{8}-1\dfrac{9}{10}=\dfrac{43}{8}-\dfrac{19}{10}=\dfrac{215}{40}-\dfrac{76}{40}=\dfrac{139}{40}\)

b) \(\left(-3\dfrac{1}{4}\right)+\left(-2\dfrac{1}{3}\right)=-\dfrac{13}{4}+\left(-\dfrac{7}{3}\right)=-\dfrac{39}{12}+\left(-\dfrac{28}{12}\right)=\dfrac{-67}{12}\)

c) \(\left(-5\dfrac{1}{8}\right)+3\dfrac{2}{4}=\left(-\dfrac{41}{8}\right)+\dfrac{14}{4}=\left(-\dfrac{41}{8}\right)+\dfrac{28}{8}=-\dfrac{13}{8}\)

d)\(\left(-3\right)-\left(-2\dfrac{2}{5}\right)=\left(-3\right)-\left(-\dfrac{12}{5}\right)=\left(-\dfrac{15}{5}\right)+\left(-\dfrac{12}{5}\right)=-\dfrac{27}{5}\)