K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

a) \(A=1999\cdot2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1\)

=> \(A< B\)

b) \(A=12^6\)

    \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

       \(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

      \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

      \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

      \(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)

=> \(A>B\)

c) \(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1\)

   \(B=2012^2\)

=> \(A< B\)

d) \(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

        \(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)

          \(=\frac{\left(3^4-1\right)\left(3^4+1\right)..\left(3^{64}+1\right)}{2}\)

          \(=\frac{\left(3^8-1\right).....\left(3^{64}+1\right)}{2}\)

           \(=\frac{3^{128}-1}{2}\)

 \(B=3^{128}-1\)

=> \(A< B\)

Cảm ơn bạn 

26 tháng 9 2017

a, Ta co : A = 1999 * 2001

= ( 2000 - 1 ) *( 2000 + 1 )

= \(2000^2-1\)

Vây A < B

cậu ơi tối mình về mình làm tiếp cho bây giờ mình phải đi hok .

26 tháng 9 2017

a) A = 1999.2001 và B = 20002
Ta có :
A = 1999.2001
= ( 2000 - 1 )( 2000 + 1 )
= 20002 - 12
= 20002 - 1
Mà : 20002 - 1 < 20002
=> A < B

DD
7 tháng 10 2021

a) \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2=B\)

b) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1< 2^{16}=A\)

c) Tương tự a).

d) Tương tự b). 

7 tháng 7 2018

a) Ta có: \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2\)

Vậy A < 20002

c) \(E=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50\)

    \(F=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52\)

Vì 50 < 52 => 2.50 < 2.52

=> E < F

28 tháng 9 2020

Câu 1

5x2 + 10y2 - 6xy - 4x - 2y + 3 

= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1

= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

Câu 2

a) A = 2011.2013 = ( 2012 - 1 )( 2012 + 1 ) = 20122 - 1 < 20122

=> A < B

B = 3128 - 1 

= ( 364 - 1 )( 364 + 1 )

= ( 332 - 1 )( 332 + 1 )( 364 + 1 )

= ( 316 - 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= ( 34 - 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= ( 32 - 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= ( 3 - 1 )( 3 + 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

= 8( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 ) > 4( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )

=> B > A

28 tháng 9 2020

a,\(5x^2+10y^2-6xy-4x-2y+3\)

\(=x^2+4x^2+y^2+9y^2-6xy-4x-2y+1+1+1\)

\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)

\(=\left(x+3y\right)^2+\left(2x+1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)

\(\Rightarrowđpcm\)

18 tháng 10 2015

Phân tích 3=4-1=\(2^2-1\)

1 tháng 9 2018

a) A = 20152

B = 2014.2016 = ( 2015 - 1 ) . ( 2015 + 1 ) = 20152 - 1

Vì 20152 > 20152 - 1

=> A > B

b) C = 316 - 1

D = 8. ( 32 + 1 ).( 34 + 1 ). ( 3+ 1 )

   = ( 32 - 1 ).( 32 + 1 ).( 34 + 1 ). ( 3+ 1 )

   = ( 34 - 1 ).( 34 + 1 ). ( 3+ 1 )

    = ( 38 - 1 ) . ( 38 + 1  )

     = 316 - 1

Vì 316 - 1 = 316 - 1

=> C = D

1 tháng 9 2018

thanks b