Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a \(\left(\sqrt{5\sqrt{7}}\right)^4=\left(\left(\sqrt{5\sqrt{7}}\right)^2\right)^2=\left(5\sqrt{7}\right)^2=25\cdot7=175\)
\(=\left(\sqrt{7\sqrt{5}}\right)^4=\left(\left(\sqrt{7\sqrt{5}}\right)^2\right)^2=\left(7\sqrt{5}\right)^2=49\cdot5=240\)
vì 175<240\(\Rightarrow\left(\sqrt{5\sqrt{7}}\right)^4< \left(\sqrt{7\sqrt{5}}\right)^4\Rightarrow\sqrt{5\sqrt{7}}< \sqrt{7\sqrt{5}}\)
b \(6=\sqrt{36}\)
\(\sqrt{31}< \sqrt{36};\sqrt{19}>\sqrt{17}\Rightarrow\sqrt{31}-\sqrt{19}< \sqrt{36}-\sqrt{17}=6-\sqrt{17}\)
c \(\left(\sqrt{10}+\sqrt{17}\right)^2=10+2\sqrt{10\cdot17}+17=27+2\sqrt{170}\)
\(\left(\sqrt{61}\right)^2=61=27+34=27+2\cdot17=27+2\sqrt{289}\)
vì \(2\sqrt{170}< 2\sqrt{289}\Rightarrow27+2\sqrt{170}< 27+2\sqrt{289}\Rightarrow\left(\sqrt{10}+\sqrt{17}\right)^2< \left(\sqrt{61}\right)^2\)
\(\Rightarrow\sqrt{10}+\sqrt{17}< \sqrt{61}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1)\) Ta có :
\(\left(\sqrt{3\sqrt{2}}\right)^4=\left[\left(\sqrt{3\sqrt{2}}\right)^2\right]^2=\left(3\sqrt{2}\right)^2=9.2=18\)
\(\left(\sqrt{2\sqrt{3}}\right)^4=\left[\left(\sqrt{2\sqrt{3}}\right)^2\right]^2=\left(2\sqrt{3}\right)^2=4.3=12\)
Vì \(18>12\) nên \(\left(\sqrt{3\sqrt{2}}\right)^4>\left(\sqrt{2\sqrt{3}}\right)^4\)
\(\Rightarrow\)\(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Vậy \(\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\sqrt{8}+3< \sqrt{9}+3=3+3=6\)
=> \(\sqrt{8}+3< 6\)
Ta có \(\sqrt{48}< \sqrt{49};\sqrt{35}< \sqrt{36}\)
=> \(\sqrt{48}+\sqrt{35}< \sqrt{49}+\sqrt{46}\)
=> \(\sqrt{48}+\sqrt{35}< 13\)
=> \(\sqrt{48}< 13-\sqrt{35}\)
c) Ta có \(-\sqrt{19}< -\sqrt{17}\)
=> \(\sqrt{31}-\sqrt{19}< \sqrt{31}-\sqrt{17}\)
=> \(\sqrt{31}-\sqrt{19}< \sqrt{36}-17=6-\sqrt{17}\)
d) Ta có \(9=\sqrt{81}\Leftrightarrow\sqrt{81}>\sqrt{80}\);
\(-\sqrt{58}>-\sqrt{59}\)
=> \(\sqrt{81}-\sqrt{58}>\sqrt{80}-\sqrt{59}\)
<=> \(9-\sqrt{58}>\sqrt{80}-\sqrt{59}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a )
\(\sqrt{31}+4< \sqrt{36}+4=10\left(1\right)\)
\(6+\sqrt{17}>6+\sqrt{16}=6+4=10\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\sqrt{31}+4< 10< 6+\sqrt{17}\)
\(\Rightarrow\sqrt{31}+4< \sqrt{17}+6\)
b )
\(\sqrt{3}+\sqrt{2}>\sqrt{1}+\sqrt{1}=2\)
c )
\(\sqrt{12+13}=\sqrt{25}=5\left(1\right)\)
\(\sqrt{12}+\sqrt{13}>\sqrt{4}+\sqrt{9}=2+3=5\left(2\right)\)
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\sqrt{12+13}< \sqrt{12}+\sqrt{13}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)
ta có \(\sqrt{5}>\sqrt{3}\)và\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\left(\sqrt{3}+\sqrt{5}\right)^2=8+\sqrt{60}\)
\(\left(\sqrt{17}\right)^2=17=8+\sqrt{81}\)
mà 60<81
nên \(3+\sqrt{5}< \sqrt{17}\)
c: \(\left(\sqrt{2004}+\sqrt{2006}\right)^2=4010+2\cdot\sqrt{2005^2-1}\)
\(\left(2\cdot\sqrt{2005}\right)^2=8020=4010+2\cdot\sqrt{2005^2}\)
mà \(2005^2-1< 2005^2\)
nên \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)
d: \(\left(\sqrt{5}+2\right)^2=9+4\sqrt{5}=9+\sqrt{80}\)
\(\left(\sqrt{3}+\sqrt{6}\right)^2=9+2\cdot\sqrt{3\cdot6}=9+\sqrt{72}\)
mà 80>72
nên \(\sqrt{5}+2>\sqrt{3}+\sqrt{6}\)
a) \(5\sqrt{6}=\sqrt{25.6}=\sqrt{150}\)
\(6\sqrt{5}=\sqrt{36.5}=\sqrt{180}\)
Do \(150< 180=>\sqrt{150}< \sqrt{180}\)
Ủng hộ nha
Thanks
làm đc phần b ko hộ mk với