Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=5^{32}-1< 5^{32}\)
Vậy \(B< A\)
\(12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^{32}-1\right)\left(5^{32}+1\right)\)
\(=\frac{1}{2}\left(5^{64}-1\right)\)
\(\text{a) }\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\dfrac{3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ \\ =\dfrac{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{\left(2^{16}-1\right)\left(2^{16}+1\right)}{3}\\ =\dfrac{2^{32}-1}{3}\\ \)
\(\text{b) }24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\\ =\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\\ =\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right) \\ =\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\\ =\left(5^{16}-1\right)\left(5^{16}+1\right)\\ =5^{32}-1\\ \)
\(\text{c) }48\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^2-1\right)\left(7^2+1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^4-1\right)\left(7^4+1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^8-1\right)\left(7^8+1\right)\left(7^{16}+1\right)\\ =\left(7^{16}-1\right)\left(7^{16}+1\right)\\ =7^{32}-1\)
Q = 532 - 24(52 + 1)(54 + 1)(58 + 1)(516 + 1)
Q = 532 - (52 - 1)(52 + 1)(54 + 1)(58 + 1)(516 + 1)
Q = 532 - (54 - 1)(54 + 1)(58 + 1)(516 + 1)
Q = 532 - (58 - 1)(58 + 1)(516 + 1)
Q = 532 - (516 - 1)(516 + 1)
Q = 532 - (532 - 1)
Q = 532 - 532 + 1
Q = 1
\(A=\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(4A=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
...
\(4A=5^{64}-1\)
\(\Rightarrow A=\frac{5^{64}-1}{4}>B=\frac{5^{64}-1}{5}\)
a) Ta có : (x + 5)2 - 16 = 0
=> (x + 5)2 = 16
=> (x + 5)2 = (-4) ; 4
\(\Leftrightarrow\orbr{\begin{cases}x+5=-4\\x+5=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=-1\end{cases}}\)
B=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^4-1)(5^4+1)(5^8+1)(5^16+1)
=(5^8-1)(5^8+1)(5^16+1)
=(5^16-1)(5^16+1)
=5^32-1
Vậy B<A