Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1+ 2+ 2^2 + ..... + 2^ 2009
2A = 2 + 2^2 + .... + 2^2010
2A - A = 2^2010 - 1 = A
B = 2^ 2010 - 1
=> A = B
a) Xin lỗi bạn nhé !!!
b) 2010^2 và 2009.2011
<=> (2009+1).2010 và 2009.(2010+1)
<=> 2009.2010+2010 > 2009.2010+2009
=> 2010^2 > 2009 . 2011
c)
\(3^{450}=3^{3\cdot150}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=5^{2\cdot150}=\left(5^2\right)^{150}=25^{150}\)
Vì \(27^{150}>25^{150}\)
Nên \(3^{450}>5^{300}\)
a) A = 2 + 22 + ... + 22010
= ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
= 2.(1+2) + 23.(1+2) + ... + 22009.(1+2)
= 2.3 + 23.3 + ... + 22009.3 chia hết cho 3
A = 2 + 22 + ... + 22010
= ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )
= 2.(1+2+22) + 24.(1+2+22) + ... + 22008.(1+2+22)
= 2.7 + 24.7 + ... + 22008.7 chia hết cho 7
b) Xét A = 2009.2011
= (2010-1) . (2010+1)
= 2010.2010 + 1.2010 - 1.2010 - 1.1
= 2010.2010 - 1
B = A - 1
Vậy B < A
c) Ta có : 3450 = 35.90 = 1590
5300 = 53.100 = 15100
Vì 1590 < 15100 nên 3450 < 5300 hay A < B
Câu 1:
\(A=27^2.32^3=\left(3^3\right)^2.\left(2^5\right)^3=3^6.2^{15}\)
\(B=6^{16}=2^{16}.3^{16}\)
Từ \(\hept{\begin{cases}2^{15}< 2^{16}\\3^6< 3^{16}\end{cases}\Leftrightarrow2^{15}.3^6< 2^{16}.3^{16}\Leftrightarrow}A< B\)
Câu 2:
\(A=1+2+2^2+2^3+...+2^{2016}\)
<=>\(2A=2\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(2A=2+2^2+2^3+2^4...+2^{2017}\)
<=>\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2016}\right)\)
<=>\(A=2^{2017}-1< 2^{2017}=B\)
Vậy A<B
muốn viết dấu mũ như thế kia thì viết thế nào hả bạn ?
A = 1 + 2 + 22 + 23 + ... + 22002
=> 2A = 2 + 22 + 23 + 24 + ... + 22003
=> 2A - A = ( 2 + 22 + 23 + 24 + ... + 22003 ) - ( 1 + 2 + 22 + 23 + ... + 22002 )
A = 22003 - 1 < 22003
hay A < B
Vậy ...
\(A=1+2+2^2+2^3+...+2^{2002}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2002}+2^{2003}\)
\(\Rightarrow2A-A=2^{2003}-1\)
\(\Rightarrow A=2^{2003}-1\)
Vì \(2^{2003}-1< 2^{2003}\)
nên A < B
= 1/2.2 + 1/3.3 + ... + 1/2018.2018
= ( 1/2 - 1/2) + (1/3 - 1/3) + ... + ( 1/2018 - 1/2018 )
= 0+0+0+0+...+0
=0
75% = 7,5
7,5 > 0 ==>
A<B
B = 75% => B = 3/4
Ta có :\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}=1-\frac{1}{2018}\)
Vì \(\frac{1}{2018}< \frac{1}{4}\Rightarrow1-\frac{1}{2018}>1-\frac{1}{4}\Rightarrow A>\frac{3}{4}\)=> A > B
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2018^2}\)
\(B=75\%=\frac{3}{4}\)
Ta có:\(A=.......\)
\(=\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\right)< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2018}=\frac{3}{4}-\frac{1}{2018}< \frac{3}{4}\)
\(\Rightarrow A< B\)
A=1+21+22+23+...+2100
2A=2+22+23+24+...+2101
2A-A=2101-1
A=2101-1
Ta có 2101>2101-1 nên B>A
2A=2+2^2+2^3+2^4+....+2^101
=> 2A-A=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+...+2^100)
<=> A=2^101-1 > B=2^101
Sửa đề:
\(A=2+2^2+2^3+2^4+...+2^{2014}\)
\(\Rightarrow2A=2^2+2^3+2^4+2^5+...+2^{2015}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+2^5+...+2^{2015}\right)-\left(2+2^2+2^3+2^4+...+2^{2014}\right)\)
\(\Rightarrow A=2^{2015}-2\)
Mà \(B=2^{2015}+1\)
\(\Rightarrow A< B\)
Ta có:
A = 2⁰ + 2¹ + 2² + 2³ +...+ 2²⁰¹⁷
=> 2A = 2¹ + 2² + 2³ +...+ 2²⁰¹⁷ + 2²⁰¹⁸
=> 2A - A = 2²⁰¹⁸ - 2⁰
=> A = 2²⁰¹⁸ - 1
Mà B = 2²⁰¹⁸ - 1
=> A = B
Vậy A=B