K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3

A = 2022^2020 +1/2022^2021+1

10A = 2022^2021 + 10/ 2022^2021+1

10A = 1+(9/2022^2021+1)

B = 2022^2022+1/2022^2023+1

10B = 2022^2023+10/2022^2023+1

10B = 1+(9/2022^2023+1)

(9/2022^2021+1)>(9/2022^2023+1)

10A>10B

A>B

5 tháng 3 2023

2022A = 2022(20222022-2)/(20222023-2)

=20222023-4044/20222023-2

=1 - 4042/20222023-2

2022B = 2022(20222023-2)/(20222024-2)

=20222024-4044/20222024-2

=1 - 4042/20222024-2

Nhận thấy 20222023<20222024

=>20222023-2 < 20222024-2

=>4042/20222023-2 > 4042/20222024-2

=>2022A < 2022B

Hay A<B

25 tháng 10 2023

Sửa đề:

So sánh 2023²⁰²² và 2022²⁰²² + 2022²⁰²¹

Ta có:

2023²⁰²² = 2023.2023²⁰²¹

2022²⁰²² + 2022²⁰²¹ = 2022²⁰²¹.(2022 + 1) = 2022²⁰²¹.2023

Do 2023 > 2022 nên 2023²⁰²¹ > 2022²⁰²¹

⇒ 2023²⁰²¹.2023 > 2022²⁰²¹.2023

Vậy 2023²⁰²² > 2022²⁰²² + 2022²⁰²¹

Ta có: 

A = \(\dfrac{10^7+5}{10^7-8}=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)

\(B=\dfrac{10^8+6}{10^8-7}=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)

Mà \(10^8-7>10^7-8\)

=> \(1+\dfrac{13}{10^7-8}>1+\dfrac{13}{10^8-7}\)

=> A < B 

Vậy A < B

Xin lỗi mình kết luận sai vì nhìn nhầm. Đáp án đúng là A > B và cả quá trình trên vẫn đúng nha.

9 tháng 12 2023

a) (-20) : (-4) với 0

= -20 : -4 = 5 sẽ là dương vì âm chia âm ra dương

Vì 5 lớn hơn không nên 5 > 0

B) (-370) : 10 với 10

= -370 : 10 = - 37 sẽ là âm vì âm chia dương ra âm

Vì dương lớn hơn âm nên -37 < 10

C)56 : (-7) với 23

= 56 : -7 = - 8 sẽ là âm vì dương chia âm ra âm

Vì dương lớn hơn âm nên -8 < 23

CỐ GẮNG HỌC NHÉ BẠN !!

9 tháng 12 2023

A lớn hơn 0

B nhỏ hơn 10

C nhỏ hơn 23

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

20 tháng 8 2021

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

20 tháng 8 2021

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)

8 tháng 7 2023

A = \(\dfrac{n^9+1}{n^{10}+1}\) 

\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n -  \(\dfrac{n-1}{n^9+1}\)

B = \(\dfrac{n^8+1}{n^9+1}\)

\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) =  n - \(\dfrac{n-1}{n^8+1}\)

Vì n > 1 ⇒ n - 1> 0

       \(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)

⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)

⇒ A < B 

 

    

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)