K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\dfrac{a1-1}{9}=\dfrac{a2-2}{8}=\dfrac{a3-3}{7}=...=\dfrac{a9-9}{1}=\dfrac{a1-1+a2-2+a3-3+...+a9-9}{9+8+7+...+1}=\dfrac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{9+8+7+...+1}=\dfrac{\left(a1+a2+...+a9\right)-\left[9.\left(9+1\right):2\right]}{45}=\dfrac{90-45}{45}=\dfrac{45}{45}=1\)\(\Rightarrow\dfrac{a1-1}{9}=1\Rightarrow a1-1=9\Rightarrow a1=9+1\Rightarrow a1=10\)

\(\dfrac{a2-2}{8}=1\Rightarrow a2-2=8\Rightarrow a2=8+2\Rightarrow a2=10\)

\(\dfrac{a3-3}{7}=1\Rightarrow a3-3=7\Rightarrow a3=7+3\Rightarrow a3=10\)

\(...\)

\(\dfrac{a9-9}{1}=1\Rightarrow a9-9=1\Rightarrow a9=1+9\Rightarrow a9=10\)

Vậy a1 = a2 = a3 = ... = a9

5 tháng 4 2017

Bài 2:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=...=\dfrac{a_9-9}{1}=\dfrac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}=\dfrac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{9+8+...+1}\)

\(=\dfrac{90-45}{45}=1\)

+) \(\dfrac{a_1-1}{9}=1\Rightarrow a_1=10\)

+) \(\dfrac{a_2-2}{8}=1\Rightarrow a_2=10\)

...

+) \(\dfrac{a_9-9}{1}=1\Rightarrow a_9=10\)

Vậy \(a_1=a_2=...=a_9=10\)

5 tháng 4 2017

giải bài 1 đê , đừng có lấy máy tính ra tính nhen

19 tháng 7 2016

mày nói từng số ra coi

26 tháng 12 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+...+a2-9}{1+2+...+9}\)

\(=\frac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)

\(\Rightarrow\frac{a1-1}{9}=1\Rightarrow a1-1=9\Rightarrow a1=10\)

\(\Rightarrow\frac{a2-2}{8}=1\Rightarrow a2-2=8\Rightarrow a2=10\)

\(.....\)

\(\Rightarrow\frac{a9-9}{1}=1\Rightarrow a9-9=1\Rightarrow a9=10\)

Vậy \(a1=a2=...=a9=10\)

26 tháng 12 2018

Ta có : \(\frac{a1-1}{9}=\frac{a2-2}{8}=\frac{a3-3}{7}=...=\frac{a9-9}{1}\)

5 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau:

 \(\frac{a_1-1}{9}=\frac{a_2-2}{8}=....=\frac{a_9-9}{1}=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{9+8+...+1}\)

                                                         \(=\frac{90-45}{45}\)\(=1\)

\(\Rightarrow a_1-1=1.9,,a_2-2=1.8,,.....,,a_9-9=1.1\)     

\(\Rightarrow a_1=a_2=...=a_9=10\)

4 tháng 8 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :0

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=..............=\dfrac{a_9-9}{1}=\dfrac{\left(a_1+a_2+......+a_9\right)-\left(1+2+....+9\right)}{9+8+..+1}\)

\(=\dfrac{90-45}{45}=1\)

+) \(\dfrac{a_1-1}{9}=1\Leftrightarrow a_1=10\)

+) \(\dfrac{a_2-1}{8}=1\Leftrightarrow a_2=10\)

........................

+) \(\dfrac{a_9-9}{1}=1\Leftrightarrow a_9=10\)

Vậy \(a_1=a_2=..........=a_9=10\)

4 tháng 8 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)

\(=\dfrac{a_1+a_2+...+a_9-\left(1+2+...+9\right)}{9+8+7+...+1}\)\(=\dfrac{90-45}{45}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a_1-1}{9}=1\\\dfrac{a_2-2}{8}=1\\.................\\\dfrac{a_9-9}{1}=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a_1-1=9\\a_2-2=8\\.................\\a_9-9=1\end{matrix}\right.\)\(\Rightarrow a_1=a_2=...=a_9=10\)