Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ 40^20=40^2.10=1600^10
3^30=3^3.10=27^10
vì 1600^10>27^10 nên 40^20>3^30
a) 40^20=(4^2)^10=16^10
30^30=(3^3)^10=27610
Vì 16<27=>16^10<27^10 hay 4^20<3^30
b) mk chịu
c) Đặt A= 1/3+1/3^2+1/3^3+...+1/3^99
=>3A=3( 1/3+1/3^2+1/3^3+...+1/3^99)
=>3A=1+1/3+1/3^2+...+1/3^98
=>3A-A=(1+1/3+1/3^2+...+1/3^98)-(1/3+1/3^2+1/3^3+...+1/3^99)
=>2A=1-1/3^99
=>A=(1-1/3^99)/2
=>A=1/2 - (1/3^99)/2 < 1/2=>a<1/2
A = 1 + 31 + 32 + 33 + ... + 320
3A = 3( 1 + 31 + 32 + 33 + ... + 320 )
3A = 3 + 32 + 33 + 34 + ... + 321
3A - A = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 31 + 32 + 33 + ... + 320 )
=> 2A = 3 + 32 + 33 + 34 + ... + 321 - 1 - 31 - 32 - 33 + ... - 320
2A = 2 + 321
A = \(\frac{2+3^{21}}{2}\); B = \(\frac{3^{21}}{2}\)
Vì 2 + 321 > 321
=> \(\frac{2+3^{21}}{2}\)> \(\frac{3^{21}}{2}\)hay A > B
A=1+ 31+32+33+...+320
3A = 3 + 3^2 + 3^3 + ... + 3^21
2A = 3^21 - 1
A = 3^21 - 1/2
3^21-1 < 3^21
=> 3^21-1/2 < 3^21/2
=> A < B
A = 1 + 2 + 22 + ... + 220
2A = 2 + 22 + 23 + ... + 221
2A - A = (2 + 22 + 23 + ... + 221) - (1 + 2 + 22 + ... + 220)
A = 221 - 1 < 221 = B
=> A < B
A = 1 + 2 + 22
+ ... + 220
2A = 2 + 22
+ 23
+ ... + 221
2A - A = (2 + 22
+ 23
+ ... + 221) - (1 + 2 + 22
+ ... + 220)
A = 221
- 1 < 221
= B
=> A < B
k cho mk nha $_$
:D
Ta có : \(A=1+2+2^2+2^3+...+2^{20}\)
\(\Rightarrow\)\(2A=2+2^2+2^3+2^4+...+2^{20}+2^{21}\)
\(\Rightarrow\)\(A=2^{21}-1\)
\(\Rightarrow\)\(A=B\)
Chúc bạn học tốt !
A=1+2+2^2+2^3+...+2^20
2A=2+2^2+2^3+2^4+...+2^21
2A-A=2^21-1
=>A=B
a) \(A=1+2+2^2+...+2^{63}\)
\(\Rightarrow2A=2.\left(1+2+2^2+...+2^{63}\right)\)
\(\Rightarrow2A=2+2^2+...+2^{64}\)
\(\Rightarrow2A-A=2+2^2+...+2^{64}-\left(1+2+2^2+...+2^{63}\right)\)
\(\Rightarrow A=2+2^2+...+2^{64}-1-2-2^2-...-2^{63}\)
\(\Rightarrow A=2^{64}-1\)
Vì \(2^{64}-1=2^{64}-1\Rightarrow A=B\)
b) \(A=3^4+3^5+...+3^{20}\)
\(\Rightarrow3A=3^5+3^6+...+3^{21}\)
\(\Rightarrow3A-A=3^5+3^6+...+3^{21}-3^4-3^5-...-3^{20}\)
\(\Rightarrow2A=3^{21}-3^4\)
\(\Rightarrow A=\frac{3^{21}-3^4}{2}\)
Mà \(B=\frac{3^{21}-3^4}{2}\Rightarrow A=B\)
1,2 dễ ko làm
3,
S = 1 + 2 + 22 + 23 + ... + 29
2S = 2 + 22 + 23 + 24 + ... + 210
2S - S = ( 2 + 22 + 23 + 24 + ... + 210 ) - ( 1 + 2 + 22 + 23 + ... + 29 )
S = 210 - 1
Mà 5 . 28 = ( 1 + 22 ) . 28 = 28 + 210 > 210 > 210 - 1
Vậy S < 5 . 28
P = 1 + 3 + 32 + 33 + ... + 320
3P = 3 + 32 + 33 + 34 + ... + 321
3P - P = ( 3 + 32 + 33 + 34 + ... + 321 ) - ( 1 + 3 + 32 + 33 + ... + 320 )
2P = 321 - 1
P = ( 321 - 1 ) : 2 < 321
Vậy P < 321
\(A=1+3+3^2+....+3^{20}\)
\(\Leftrightarrow3A=3+3^2+...+3^{21}\)
\(\Leftrightarrow3A-A=\left(3+3^2+...+3^{21}\right)-\left(1+3+....+3^{20}\right)\)
\(\Leftrightarrow2A=3^{21}-1\)
\(\Leftrightarrow A=\dfrac{3^{21}-1}{2}\)
Mà \(B=3^{21}-1\)
\(\Leftrightarrow A< B\)
A=1+3+3^2+........+3^20
3A = 3 . ( 1 + 3 + \(3^2+...+3^{20}\))
3A = 3 + \(3^2+3^3+...+3^{21}\)
=> 3A - A = ( 3 + \(3^2+3^3+...+3^{21}\)) - ( \(1+3+3^2+3^{20}\) )
2A = \(3+3^2+3^3+...+3^{21}-1+3+3^2+...+3^{20}\)
=> A = \(\dfrac{3^{21}-1}{2}\)
Vì \(3^{21}-1\) > \(\dfrac{3^{21}-1}{2}\) nên => A < B
Vậy A < B