K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/248+ 1/249

2A - A = (1 + 1/2 + 1/22 + 1/2+ ... + 1/248 + 1/249) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/249 + 1/250)

A = 1 - 1/250

9 tháng 4 2016

2A=1+1/2+................+1/2^49+1/2^50

A=1+1/2^50=> A>1

1 tháng 5 2016

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(M=1-\frac{1}{50}\)

\(\Rightarrow1>M\)

1 tháng 5 2016

Ta có: 1/1.2+1/2.3+...+1/49.50

=        1-1/2+1/2-1/3+...+1/49-1/50

=        1-1/50

Ta có: 1-1/50 < 1 (luôn luôn đúng)

=> M<1

27 tháng 1 2018

b) n + 3 \(⋮\) n - 1 <=> (n - 1) + 4 \(⋮\) n - 1

=> 4 \(⋮\) n - 1 (vì n - 1 \(⋮\) n - 1)

=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}

Lập bảng giá trị:

n - 11-12-24-4
n203-15-3

Vậy n ∈ {2; 0; 3; -1; 5; -3}

27 tháng 1 2018

phần a,c mk ko biết làm nhé ~

b) n + 3  n - 1 <=> (n - 1) + 4  n - 1

=> 4  n - 1 (vì n - 1  n - 1)

=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}

Lập bảng giá trị:

n - 11-12-24-4
n203-15-3

Vậy n ∈ {2; 0; 3; -1; 5; -3}

chúc các bn hok tốt !

13 tháng 3 2017

Ta có :

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.......;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)

\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}< 1+3=4\)

Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}< 4\)

13 tháng 3 2017

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

=> \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 3+1-\frac{1}{50}=4-\frac{1}{50}< 4\)

Vậy \(3+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 4\)

12 tháng 3 2019

Bài 5 :

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

    \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{59}\)

     \(A=1-\frac{1}{50}\)

từ trên ta có : \(1-\frac{1}{50}< 1\)

\(\Rightarrow A< 1\)

     

10 tháng 8 2016

c) Ta co : A=1/2^1+1/2^2+...+1/2^49+1/2^50

2A=1+1/2+1/2^2+........+1/2^48+1/2^49

A=1-1/2^50<1

Vậy A=1/2^1+1/2^2+...+1/2^49+1/2^50 <1