Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1030 với 2100
Ta có: 1030=(103)10 =100010
2100= (210)10 =102410
Mà: 100010 < 102410
Nên: 1030 < 2100
b) 540 với 62010
Ta có: 540=(54)10=62510
Mà: 62510 > 62010
Nên: 540 > 62010
Bài 1 . So sánh
a) 1030 và 2100
1030 = ( 103 )10 = 100010
2100 = ( 210 )10 = 102410
Vì 100010 < 102410 nên 1030 < 2100
b) 540 và 62010
540 = ( 54 )10 = 62510
Vì 62510 > 62010 nên 540 > 62010
\(125^5\)và \(25^7\)
Ta có:
\(125^5=\left(5^3\right)^5=5^{15}\)
\(25^7=\left(5^2\right)^7=5^{14}\)
Vì \(5^{15}>5^{14}\)
\(\Rightarrow125^5>25^7\)
a, \(125^5=\left(5^3\right)^5=5^{15}\)
\(25^7=\left(5^2\right)^7=5^{14}\)
mà \(5^{15}>5^{14}\)\(\Rightarrow\)\(125^5>25^7\)
b, ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
mà \(1000^{10}< 1024^{10}\)nên \(10^{30}< 2^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100};2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(\rightarrow3^{200}>2^{300}\)
\(3^{54}=\left(3^2\right)^{27}=9^{27};2^{81}=\left(2^3\right)^{27}=8^{27}\)
\(\rightarrow3^{54}>2^{81}\)
a ) 10^30 va 2^100
10^30 = ( 10^3 )^10 = 1000^10 ; 2^100 = ( 2^10 )^10 = 1024^10
Vi 1000 < 1024 nen 1000^10 < 1024^10
=> 10^30 < 2^100
b) 5^10 va 620^10
Vi 5 < 620 nen 5^10 < 620^10
c ) 9^20 va 27^13
9^20 = ( 3^2)^20 = 3^40 ; 27^13 = (3^3)^13 = 3^39
Vi 40 > 39 nen 3^40 > 3^39
=> 9^20 > 27^13