K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2015

A=10^1990+1/10^1991

A=10.(10^1990+1 / 10^1991+1)

10A=10^1991+10 / 10^1991+1

10A=10^1991+1 / 10^1991+1 +9/10^1991+1

10A=1 + 9/10^1991

B=10^1991+1 / 10^1992+1

B=10.(10^1991+1 / 10^1992+1)

10B=10^1992+10 / 10^1992+1

10B=10^1992+1 / 10^1992+1 + 9/10^1992+1

10B= 1+9/10^1992+1

Ta có    9/10^1991 > 9/10^1992

                 10A     >     10B

                     A    >       B

 

5 tháng 5 2015

Vì \(\frac{10^{1994}+1}{10^{1992}+1}\)<1

=> \(\frac{10^{1994}+1}{10^{1992}+1}\)<\(\frac{10^{1994}+1+9}{10^{1992}+1+9}\)

Ta có \(\frac{10^{1994}+1+9}{10^{1992}+1+9}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10^{1990}+1}{10^{1991}+2}\)

=>\(\frac{10^{1994}+1}{10^{1992}+1}\)<\(\frac{10^{1990}+1}{10^{1991}+2}\)

Vậy B < A

20 tháng 7 2021

Ta có : \(\dfrac{1}{2}< \dfrac{1}{1.2};\dfrac{1}{2^2}< \dfrac{1}{2.3};...;\dfrac{1}{2^{10}}< \dfrac{1}{9.10}\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{10}}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{9}{10}< 1\Rightarrow A< B\)

17 tháng 3 2021

A = B

9 tháng 8 2017

a) Ta có: 2017 2016 = 1 + 1 2016 ; 2019 2018 = 1 + 1 2018 . Vì 1 2016 > 1 2018 nên  2017 2016 > 2019 2018

b) Ta có: 73 64 = 1 + 9 64 ; 51 45 = 1 + 6 45 . Vì 9 64 = 18 128 > 6 45 = 18 135 nên  73 64 > 51 45

15 tháng 1 2019

a) Ta có: 1 − 26 27 = 1 27 ; 1 − 96 97 = 1 97 . Vì 1 27 > 1 97 nên  26 27 < 96 97

b) Ta có: 1 − 102 103 = 1 103 ; 1 − 103 105 = 2 105 . Vì 1 103 = 2 206 < 2 105 nên  102 103 > 103 105

18 tháng 5 2016

 \(A=\frac{2006^{2006}+1}{2006^{2007}+1}\)                   VÀ    \(B=\frac{2006^{2005}+1}{2006^{2006}+1}\)

Ta có: \(A=\frac{2006^{2006}+1}{2006^{2007}+1}< 1\)

Nên \(A=\frac{2006^{2006}+1}{2006^{2007}+1}< \frac{2006^{2006}+1+2005}{2006^{2007}+1+2005}=\frac{2006^{2006}+2006}{2006^{2007}+2006}\)

                                                                                         \(=\frac{2006.\left(2006^{2005}+1\right)}{2006.\left(2006^{2006}+1\right)}\)

                                                                                            \(=\frac{2006^{2005}+1}{2006^{2006+1}}=B\)

Vậy \(A< B\)

ảnh lỗi kìa làm lại đi bạn ê

15 tháng 5 2022

Có ai thấy ảnh ko ?

undefined

Câu 5 nhé

A = 1/2 + 1/22 + 1/23 + 1/24+...+ 1/22021 + 1/22022

và B = 1/3+1/4+1/5+17/60

Hỏi :

a) Rút gọn A

  b)So sánh A và B