Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times.....\times\left(1-\frac{1}{99}\right)\times\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times.....\times\frac{98}{99}\times\frac{99}{100}\)
\(=\frac{1}{100}\)
Chúc bạn học tốt
Bạn tham khảo link tại đây nhé :v
https://olm.vn/hoi-dap/detail/217907126396.html
giúp mk ý c thôi cũng được chỉ ý tính tỉ số phần trăm.....
chỉ cẩn làm câu đấy mk k
Ta có :
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
\(.........\)
\(\frac{1}{200}=\frac{1}{200}\)
Cộng vế với vế ta được :
\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)
Bắt đầu vs phân số có mẫu lớn hơn trước
Ta có: B=\(\frac{10^{1991}+1}{10^{1992}+1}\)<1
Có 1 công thức là \(\frac{a}{b}< 1\) => \(\frac{a}{b}< \frac{a+m}{b+m}\) nên
B<\(\frac{10^{1991}+1+9}{10^{1992}+1+9}\)(theo mình học thì phải cộng sao cho số đứng sau thành 1 số là số có mũ đằng trc)
B<\(\frac{10^{1991}+10}{10^{1992}+10}\)
B<\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\) (lúc này nhớ đến tính chất phân phối của phép nhân)
Mà \(\frac{10^{1990}+1}{10^{1991}+1}\)(vế trong ngoặc)=A
=>A>B
Mình làm cách 2 cho nhanh nhé !!
Ta có : \(\dfrac{10^{1991}+1}{10^{1992}+1}\)
\(\Rightarrow B=\dfrac{10^{1991}+1}{10^{1992}+1}< \dfrac{10^{1991}+1+9}{10^{1992}+1+9}\)
= \(\dfrac{10^{1991}+1}{10^{1992}+1}\)
=\(\dfrac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)
= \(\dfrac{10^{1990}+1}{10^{1991}+1}=A\)
Vậy B<A.