K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

Dễ thấy A < 1. Áp dụng nếu \(\frac{a}{b}<1\) thì \(\frac{a}{b}<\frac{a+m}{b+m}\) ta có :

\(A=\frac{100^{100}+1}{100^{99}+1}<\frac{\left(100^{100}+1\right)+\left(100^{31}-1\right)}{\left(100^{99}+1\right)+\left(100^{31}-1\right)}=\frac{100^{100}+100^{31}}{100^{99}+100^{31}}=\frac{100^{31}.\left(100^{69}+1\right)}{100^{31}.\left(100^{68}+1\right)}=\frac{100^{69}+1}{100^{68}+1}=B\)

Vậy A < B

 

 

11 tháng 3 2016

\(\frac{100^{100}+1}{100^{99}+1}=\frac{100^{69}+1}{100^{68}+1}\)

13 tháng 1 2016

A<0

B>0

 

 

26 tháng 2 2016

132 phần 240 và 600 phần 240

29 tháng 6 2017

chuyen cac hon so thanh phan so roi thuc hien phep tinh : 2   2/3 +1  4/7

29 tháng 3 2016

Trước hết ta so sánh 10A và 10B

Ta có:

           \(10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)                \(10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)

Vì:  \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\) nên 10A > 10B, do đó A>B

 

29 tháng 3 2016

Ta thấy:B<1 vì 1015+1<1016+1 
Theo quy tắc :\(\frac{a}{b}\)<\(\frac{a+m}{b+m}\)nên ta có: B =\(\frac{10^{16}+1}{10^{17}+1}\)<\(\frac{10^{16}+1+9}{10^{17}+1+9}\)<\(\frac{10^{16}+10}{10^{17}+10}\)<\(\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}\)=A
Suy ra B<A

16 tháng 3 2016

A B C M

Mình giải câu a trước nhé!

Xét tam giác ABM và tam giác ACM có:

Góc A1=A2(chỗ này mình lười viết góc) (Phân giác góc A)

AB=AC(tam giác ABC cân tại A)

AM chung

=> Tam giác ABM=ACM(c-g-c)

16 tháng 1 2017

Umk, thanks bn nhìu nha.

11 tháng 4 2016

tính theo bài hiệu-tỉ đó bạn

18 tháng 4 2017

ta có: a/b = 1/1/1 = 3/2 (1)
a - b = 8 (2)
từ (1) => 2a = 8b (nhân chéo nha)
=>a = 3b/a
thay a = 3b/a vào (2)
3b/2 - b = 8
giải tiếp nha
kết quả: a = 24
b = 16

14 tháng 3 2019

Đáp án B

Đặt t = log u 1 , khi đó giả thiết ⇔ t 3 - 2 t 2 + t - 2 = 0 ⇔ t - 2 t 2 + 1 = 0 ⇔ t = 2 ⇒ log u 1 = 2  

Ta có u n + 1 = 2 u n + 10 ⇔ u n + 1 + 10 = 2 u n + 10 ⇔ v n + 1 = 2 v n  với v n = u n + 10  

Dễ thấy v n + 1 = 2 v n  là một cấp số nhân với công bội q = 2 ⇒ v n = v 1 . 2 n - 1  

Mà log u 1 = 2 ⇒ u 1 = 10 2 = 100  suy ra v 1 = u 1 + 10 = 110 ⇒ v n = 100 . 2 n - 1  

Khi đó u n = v n - 10 = 100 . 2 n - 1 - 10 > 10 100 - 10 ⇔ 2 n - 1 > 10 98 ⇔ n > log 2 10 98 + 1 = 326 , 54  

Vậy giá trị nhỏ nhất của n cần tìm là n m i n = 327 .

16 tháng 6 2017

\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)

\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)

Ta có :

\(1-A=1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)

\(1-B=1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)

NHận thấy \(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow A< B\)

16 tháng 6 2017

Ta có:

\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)

\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)

Ta lại có:

\(1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)

\(1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)

\(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow\dfrac{1010}{1011}< \dfrac{1011}{1012}\Rightarrow A< B\)

12 tháng 3 2016

Ta có :

\(31^{11}<32^{11}=\left(2^5\right)^{11}=2^{55}\)

và \(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)

Mà 255 < 256 nên ta được 3111 < 255 < 256 < 1714

Vậy 3111 < 1714

7 tháng 3 2016

Ta có :

\(\frac{1+2+3+...+a}{a}<\frac{1+2+3+...+b}{b}\)

\(\Leftrightarrow\frac{a\left(a+1\right)}{a}<\frac{b\left(b+1\right)}{b}\)

<=> a + 1 < b + 1

<=> a < b

11 tháng 2 2017

có 1+2+3+...+a/a<1+2+3+...+b/b

=>(a+1)(a-1+1):2/a<(b+1)(b-1+1):2/b

<=>(a+1)a:2/a<(b+1)b;2/b

<=>a+1<b+1

<=>a<b

vậy a<b