K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021

\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)

\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)

 

 

19 tháng 9 2021

Mai lam

 

19 tháng 6 2016

a,Tính tổng:S=1+52+54+...+5200

=>52S=52+54+56+...+5202

=>25S-S=24S=5202-1

=>S=\(\frac{5^{202}-1}{24}\)

b,So sánh 230+330+430 và 3.2410

3.24^10=3^11.4^15 
4^30=4^15.4^15 
hiển nhiên 4^15>3^11 
=>3.24^10<<4^30<<<2^30+3^20+4^30

12 tháng 6 2017

Ta có: 230+330+430>230+230+430=231+230.230

                                                                 =231(1+229) (1)

Lại có:3.24^10=3^11.2^30 (2)

So sánh (1)và (2): Vì 3^11<4^11=2^22<2^29

                              và 2^30<2^31

=> 3^11.2^30 <(1+2^29)2^31<2^30+3^30+4^30

17 tháng 10 2017

Bài 2:

Ta có: \(\left.\begin{matrix} \frac{x}{4} = \frac{y}{5} & & \\ \frac{y}{5} = \frac{z}{2} & & \end{matrix}\right\}\)

=> \(\frac{x}{4} = \frac{y}{5} = \frac{z}{2}\)

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{4} = \frac{y}{5} = \frac{z}{2} = \frac{x - y + z}{4 - 5 + 2}= \frac{98}{1}= 98\)

=> x = 98 * 4 = 392

y = 98 * 5 = 490

z = 196

Vậy x = 392, y = 490, z = 196

Bài 3:

Gọi x,y lần lượt là số cây trồng của lớp 7A, 7B

Theo đề bài ta có: \(\frac{x}{4} = \frac{y}{5}\) và y - x = 12

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{4} = \frac{y}{5}= \frac{y - x}{5 - 4}= \frac{12}{1}= 12\)

=> x = 12 * 4 = 48

y = 12 * 5= 60

Vậy lớp 7A trồng 48 cây

.......lớp 7B trồng 60 cây

17 tháng 10 2017

Cam on!vui

16 tháng 2 2016

0123456789876543210

4 tháng 2 2018

Gọi 2n+1=a2   ; 3n+1=b2   (a,b thuộc N, \(10\le n\le99\))

\(10\le n\le99\Rightarrow21\le2n+1\le199\)

\(\Rightarrow21\le a^2\le199\)

Mà 2n+1 lẻ

\(\Rightarrow2n+1=a^2\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow n\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\)

Mà 3n+1 là số chính phương

\(\Rightarrow3n+1=121\Rightarrow n=40\)

Vậy n=40

4 tháng 2 2018

10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

↔ n ∈{12;24;40;60;84}

↔ 3n+1∈{37;73;121;181;253}

↔ n=40 

Vậy n=40 thoả mãn đề bài

9 tháng 7 2017

a) Ta có : n / 2n + 3 < n + 2 / 2n + 3 + 2

                                = n + 2 / 2n + 5

Mà n + 2 / 2n + 5 < n + 2 / 2n + 1

=> n / 2n + 3 < [ n + 2 / 2n + 5 ] < n + 2 / 2n + 1

Vậy n / 2n + 3 < n + 2 / 2n + 1

b) Ta có : n / 3n + 1 = 2n / 6n + 2

Mà 2n / 6n + 2 < 2n / 6n + 1

Vậy n / 3n + 1 < 2n / 6n + 1