Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}=\frac{19}{20}\)
Vậy\(A=\frac{19}{20}\)
A = 1×2 + 2×3 + 3×4 + ... + 98×99
3A = 1×2×(3-0) + 2×3×(4-1) + 3×4×(5-2) + ... + 98×99×(100-97)
3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + 3×4×5 - 2×3×4 + ... + 98×99×100 - 97×98×99
3A = 98×99×100
A = 98×33×100
A = 323400
2) Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
Ta có:
102012 + 1/102013 + 1 < 102012 + 1 + 9/102013 + 1 + 9
< 102012 + 10/102013 + 10
< 10.(102011 + 1)/10.(102012 + 1)
< 102011 + 1/102012 + 1
Vào lúc: 2016-07-17 13:22:30 Xem câu hỏi
1) A = 1×2 + 2×3 + 3×4 + ... + 98×99
3A = 1×2×(3-0) + 2×3×(4-1) + 3×4×(5-2) + ... + 98×99×(100-97)
3A = 1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + 3×4×5 - 2×3×4 + ... + 98×99×100 - 97×98×99
3A = 98×99×100
A = 98×33×100
A = 323400
2) Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
Ta có:
102012 + 1/102013 + 1 < 102012 + 1 + 9/102013 + 1 + 9
< 102012 + 10/102013 + 10
< 10.(102011 + 1)/10.(102012 + 1)
< 102011 + 1/102012 + 1
\(A=\dfrac{11}{1.2}+\dfrac{11}{2.3}+\dfrac{11}{3.4}+...+\dfrac{11}{199.200}\)
\(A=11\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{199.200}\right)\)
\(A=11\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\right)\)
\(A=11\left(1-\dfrac{1}{200}\right)\)
\(A=11.\dfrac{199}{200}=\dfrac{2189}{200}\)
\(B=3-\dfrac{1}{10}-\dfrac{1}{40}-\dfrac{1}{88}-\dfrac{1}{154}\)
\(B=3-\left(\dfrac{1}{10}+\dfrac{1}{40}+\dfrac{1}{88}+\dfrac{1}{154}\right)\)
\(B=3-\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}\right)\)
\(B=3-\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}\right)\)
\(B=3-\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{14}\right)\)
\(B=3-\dfrac{3}{7}=\dfrac{18}{7}\)
Có:\(10A=\dfrac{10^{16}+10}{10^{16}+1}=\dfrac{10^{16}+1+9}{10^{16}+1}=\dfrac{10^{16}+1}{10^{16}+1}+\dfrac{9}{10^{16}+1}=1+\dfrac{9}{10^{16}+1}\)
\(10B=\dfrac{10^{17}+10}{10^{17}+1}=\dfrac{10^{17}+1+9}{10^{17}+1}=\dfrac{10^{17}+1}{10^{17}+1}+\dfrac{9}{10^{17}+1}=1+\dfrac{9}{10^{17}+1}\)
\(1+\dfrac{9}{10^{16}+1}>1+\dfrac{9}{10^{17}+1}\Rightarrow A>B\)
Vậy \(A>B\)
1,1020và 9010
ta có:+,1020=(102)10=10010
+,9010=9010
vì 10010>9010=>1020>9010
2,(1/16)10 và (1/2)50
ta có:+, (1/16)10=(1/16)10
+,(1/2)50=(1/25)10=(1/32)10
vì (1/16)10>(1/32)10=>(1/16)10>(1/2)50
k mik nhé
\(a,\) \(10^{20}=10^{10+10}=10^{10}.10^{10}\)
\(90^{10}=9^{10}.10^{10}\)
Vì \(10^{10}.10^{10}>9^{10}.10^{10}\)
\(\Rightarrow10^{20}>90^{10}\)
Vậy \(10^{20}>90^{10}\)
\(b,\)\(\left(\frac{1}{16}\right)^{10}=\frac{1^{10}}{16^{10}}=\frac{1}{\left(4^2\right)^{10}}=\frac{1}{4^{20}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1^{50}}{2^{50}}=\frac{1}{\left(2^2\right)^{25}}=\frac{1}{4^{25}}\)
Vì \(\frac{1}{4^{20}}>\frac{1}{4^{25}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
~~~~~~~~~~Hok tốt~~~~~~~~~~~
c, A= 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/100-1/101
A= 1-1/101
A= 100/101
Vậy A= 100/101