Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a.Ta có 1 - 1/2 + 1/3 - 1/4 + ... + 1/199 - 1/200
=(1+1/2+1/3+1/4+.....+1/199+1/200) -2(1/2+1/4+1/6+......+1/200)
=(1+1/2+1/3+1/4+.....+1/199+1/200) -(1+1/2+1/3+.....+1/100)
=1/101+1/102+....+1/199+1/200
b.Tổng quát bạn tự làm nhé
Bài 1 :
Ta giải bài toán tổng quát :chứng minh rằng : với n là số tự nhiên lớn hơn 1 , ta luô có :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}\)\(-\frac{1}{2n}\)
\(=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
Thật vậy ,kí hiệu \(S2n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n}\)thì ta có :
\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2n}=S2n-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2n}\right)\)
\(=S2n-\left(1+\frac{1}{2}+...+\frac{1}{n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+..+\frac{1}{2n}\)
Bài toán ở câu a chỉ là trường hợp riêng của bài toán trên với \(n=100\)
Bài 2 :
Đặt \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{15}\left(1\right)\)
\(T=1.3.5.7...15\)( Tích các số lẻ bé hơn hoặc bằng 15 )
Nhân 2 vế của ( 1 ) với 2^2 .T ta được :
\(S.2^2T=\frac{2^2T}{2}+\frac{2^2T}{3}+\frac{2^2T}{4}+...+\frac{2^2T}{15}\left(2\right)\)
Dễ thấy tất cả các số hạng ở vế phải của ( 2) ,trừ số hặng \(\frac{2^2T}{2^3}\)đều là số tự nhiên ,suy ra vế phải có tổng không phải là số tự nhiên .Do đó S không phải là số tự nhiên
Chúc bạn học tốt ( -_- )
2. a) \(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)
b) \(71^{50}=\left(71^2\right)^{25}=5041^{25}\)
\(37^{75}=\left(3^3\right)^{25}=27^{25}\)
Vì \(5041^{25}>27^{25}\Rightarrow71^{50}>37^{75}\)
c) \(\frac{201201}{202202}=\frac{201201:1001}{202202:1001}=\frac{201}{202}\)
\(\frac{201201201}{202202202}=\frac{201201201:1001001}{202202202:1001001}=\frac{201}{202}\)
Vì \(\frac{201}{202}=\frac{201}{202}\Rightarrow\frac{201201}{202202}=\frac{201201201}{202202202}\)
a, Xét 2010 . 2010 = (2009+1).2010
= 2009.2010 +2010
= (2009.2010+2009)+1
= 2009.(2010+1)+1
= 2009.2011+1
>= 2009.2010
=> 2010/2009 > 2011/2010
Tk mk nha
a, \(\frac{2010}{2009}\)và \(\frac{2011}{2010}\)
Ta có:
2010.2010 = ( 2009 + 1 ) . 2010
= 2009 . 2010 + 2010
= ( 2009 . 2010 + 2019 ) + 1
= 2019 . ( 2010 + 1 ) + 1
= 2019 . 2011 + 1
\(\Rightarrow\)\(\frac{2010}{2009}>\frac{2011}{2010}\)
b, \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...........+\frac{1}{200}\)và 1
Ta có:
\(\frac{1}{101}< 1;\frac{1}{102}< 1;\frac{1}{103}< 1;........;\frac{1}{200}< 1\)
\(\Rightarrow\)\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.............+\frac{1}{200}< 1\)