Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{10^{18}+1}{10^{19}+1}< 1\Rightarrow B=\frac{10^{18}+1}{10^{19}+1}< \frac{10^{18}+1+9}{10^{19}+1+9}\)
\(\Rightarrow B< \frac{10^{18}+10}{10^{19}+10}\)
\(\Rightarrow B< \frac{10\left(10^{17}+1\right)}{10\left(10^{18}+1\right)}\)
\(\Rightarrow B< \frac{10^{17}+1}{10^{18}+1}\)
\(\Rightarrow B< A\)
Vậy A > B.
Ta có: \(A=\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}=\frac{-9}{10^{2010}}-\frac{9}{10^{2011}}-\frac{10}{10^{2011}}\)
\(=\frac{-9}{10^{2010}}-\frac{9}{10^{1011}}-\frac{1}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-10}{10^{2010}}\)
Ta thấy : \(\frac{10}{10^{2010}}< \frac{19}{10^{2010}}\Rightarrow\frac{-10}{10^{2010}}>\frac{-19}{10^{2010}}\)
\(\Rightarrow\frac{-9}{10^{2011}}+\frac{-10}{10^{2010}}>\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}\)
Hay \(A>B\)
Vậy ...
đặt \(A=\frac{10^{18}+1}{10^{19}+1};B=\frac{10^{19}+1}{10^{20}+1}\)
ta có: \(10A=\frac{10^{19}+1+9}{10^{19}+1}=1+\frac{9}{10^{19}+1}\)
\(10B=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
mà \(\frac{9}{10^{19}+1}>\frac{9}{10^{20}+1}\)
=> 10A >10B
=> A > B
Ta có
\(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)
\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)
\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)
\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)
Lại có \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)
Từ (1),(2) => B>A
Ta có: \(A=\frac{10^{18}+1}{10^{19}+1}>\frac{10.\left(10^{17}+1\right)}{10.\left(10^{18}+1\right)}=\frac{10^{17}+1}{10^{18}+1}\)
Vậy A < B
lolllllo