Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{2011}\right)-\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)-\left(1-\frac{1}{2014}\right)\)
\(=1-\frac{1}{2011}-1+\frac{1}{2012}+1-\frac{1}{2013}-1+\frac{1}{2014}\)
\(=\left(1-1+1-1\right)-\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2014}\right)\)
còn lại bó tay @@
\(A=\frac{2010}{2011}-\frac{2011}{2012}+\frac{2012}{2013}-\frac{2013}{2014}\)
và
\(B=\frac{1}{2010.2011}-\frac{1}{2012.2013}\)
Bài :1
\(Q=\frac{2010+2011+2012}{2011+2012+2013}\)
\(Q=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
\(\Rightarrow\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
\(\Rightarrow P>Q\)
Ta có :
\(\frac{1}{2013}M=\frac{2013^{2012}+2012}{2013^{2012}+2013}=\frac{2013^{2012}+2013}{2013^{2012}+2013}-\frac{1}{2013^{2012}+2013}=1-\frac{1}{2013^{2012}+2013}\)
Lại có :
\(\frac{1}{2013}N=\frac{2013^{2011}+2012}{2013^{2011}+2013}=\frac{2013^{2011}+2013}{2013^{2011}+2013}-\frac{1}{2013^{2011}+2013}=1-\frac{1}{2013^{2011}+2013}\)
Vì \(\frac{1}{2013^{2012}+2013}< \frac{1}{2013^{2011}+2013}\) nên \(M=1-\frac{1}{2013^{2012}}>N=1-\frac{1}{2013^{2011}+2013}\)
Vậy \(M>N\)
Chúc bạn học tốt ~
\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}\)
\(=1+\frac{1}{2013}+1+\frac{1}{2012}+1+\frac{1}{2011}+1-\frac{3}{2014}\)
\(=4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)\)
Ta có:
\(\frac{1}{2011}>\frac{1}{2014}\Rightarrow\frac{1}{2011}-\frac{1}{2014}>0\)
\(\frac{1}{2012}>\frac{1}{2014}\Rightarrow\frac{1}{2012}-\frac{1}{2014}>0\)
\(\frac{1}{2013}>\frac{1}{2014}\Rightarrow\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Rightarrow\frac{1}{2011}-\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Rightarrow4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)>4\)( thêm 2 vế với 4 )
\(\Rightarrow\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)
Vậy \(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)
Tham khảo nhé~
N =\(\frac{2010+2011+2012}{2011+2012+2013}\)
\(\Rightarrow N=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Do: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013};\frac{2011}{2012}>\frac{2011}{2011+2012+2013};\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\Leftrightarrow N>M\)
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
\(\frac{B}{A}=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)
\(=\frac{\left(\frac{2011}{2}+1\right)+\left(\frac{2010}{3}+1\right)+...+\left(\frac{1}{2012}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)
\(=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+....+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}=2013\)