\(\dfrac{2^{2021}+1}{2^{2021}}\) và B=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2023

A = \(\dfrac{2^{2021}+1}{2^{2021}}\) =  \(\dfrac{2^{2021}}{2^{2021}}\)  + \(\dfrac{1}{2^{2021}}\) = 1 + \(\dfrac{1}{2^{2021}}\)

B = \(\dfrac{2^{2021}+2}{2^{2021}+1}\) = \(\dfrac{2^{2021}+1+1}{2^{2021}+1}\) = \(\dfrac{2^{2021}+1}{2^{2021}+1}\) +\(\dfrac{1}{2^{2021}+1}\) = 1 + \(\dfrac{1}{2^{2021}+1}\)

Vì \(\dfrac{1}{2^{2021}}\) > \(\dfrac{1}{2^{2021}+1}\) nên 1 + \(\dfrac{1}{2^{2021}}\) > 1 + \(\dfrac{1}{2^{2021}+1}\)

Vậy A > B 

16 tháng 8 2020

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

15 tháng 3 2020

Ta có: \(A=2019.2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1\)

\(B=2020^2\)

=> A <  B

15 tháng 3 2020

A=2019.2021

A=(2020-1)(2020+1)

A=2020²-1

Vậy: A<B

24 tháng 5 2020

Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)

=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)

=> A > B.

25 tháng 3 2022

Ta có: \(A=\frac{2020}{2021}+\frac{2021}{2022}\)

\(\Rightarrow A=\frac{2021}{2021}-\frac{1}{2021}+\frac{2022}{2022}-\frac{1}{2022}\)

\(\Rightarrow A=1-\frac{1}{2021}+1-\frac{1}{2022}\)

\(\Rightarrow A=1+1-\frac{1}{2021}-\frac{1}{2022}\)

\(\Rightarrow A=2-\frac{1}{2021}-\frac{1}{2022}\)

\(\Rightarrow A=2-\frac{1}{2021\cdot2022}\)

\(B=\frac{2020+2021}{2021+2022}\)

\(\Rightarrow B=\frac{2021+2022}{2021+2022}-\frac{2}{2021+2022}\)

\(\Rightarrow B=1-\frac{2}{2021+2022}\)

\(\Rightarrow B=1-\frac{2}{4043}\)

Vậy ta sẽ so sánh:

\(1-\frac{1}{2021\cdot2022};\frac{2}{4043}\)

Vì \(2021\cdot2022>4043\)nên \(\frac{1}{2021\cdot2022}< \frac{2}{4043}\)vậy \(1-\frac{1}{2021\cdot2022}>\frac{2}{4043}\)

\(\Rightarrow\frac{2020}{2021}+\frac{2021}{2022}>\frac{2020+2021}{2021+2022}\)

\(\Rightarrow A>B\)

27 tháng 7 2021

Có: 2020 x 2022 = 2020 x ( 2021 +1)

                              = 2020 x 2021 +2020 (1)

Có: 2021 x 2021 = 2021 x ( 2020 +1)

                           = 2021 x 2020 +2021    ( 2)

Từ ( 1) và ( 2) => 2020 x2022 < 2021 x 2021. OK CHƯA BN

27 tháng 7 2021

2020 x 2022 < 2021 x 2021

21 tháng 7 2020

a) -3  \(\inℤ\)

b)\(\frac{-2}{9}\)\(\inℚ\)

c) 2020\(\inℕ,ℤ\)

d) \(\frac{-2020}{2021}\notinℕ,ℤ\)

21 tháng 5 2020

ewewdscx