K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2021

A=\(\dfrac{2018}{987654321}+\dfrac{2018}{24683579}+\dfrac{1}{24683579}\)

B=\(\dfrac{2018}{987654321}+\dfrac{2018}{24683579}+\dfrac{1}{987654321}\)

Vì \(\dfrac{1}{987654321}< \dfrac{1}{24683579}\) nên B<A

11 tháng 12 2023

b.\(\dfrac{1}{2019.2018}\)

11 tháng 12 2023

b nhé 

nhiên 5a1 dúng ko

 

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

20 tháng 5 2023

A = \(\dfrac{2020}{2019}\) - \(\dfrac{2019}{2018}\) + \(\dfrac{1}{2019\times2018}\)

A = \(\dfrac{2020}{2019}\) - \(\dfrac{2019}{2018}\) +  ( \(\dfrac{1}{2018}\) - \(\dfrac{1}{2019}\))

A = \(\dfrac{2020}{2019}\) - \(\dfrac{2019}{2018}\) + \(\dfrac{1}{2018}\) - \(\dfrac{1}{2019}\)

A = ( \(\dfrac{2020}{2019}\) - \(\dfrac{1}{2019}\)) - ( \(\dfrac{2019}{2018}\) - \(\dfrac{1}{2018}\))

A = \(\dfrac{2019}{2019}\) - \(\dfrac{2018}{2018}\)

A = 1 - 1

A = 0

20 tháng 5 2023

ét o ét

17 tháng 1 2023

Ta có : 

\(A=\dfrac{2019\times2020}{2019\times2020+1}=\dfrac{2019\times2020+1-1}{2019\times2020+1}=1-\dfrac{1}{2019\times2020+1}\)

Suy ra  A < 1 (1) 

Lại có \(B=\dfrac{2020}{2019}=\dfrac{2019+1}{2019}=\dfrac{2019}{2019}+\dfrac{1}{2019}=1+\dfrac{1}{2019}\)

Suy ra B > 1 (2) 

Từ (1) và (2) ta có : A < 1 < B

=> A < B

Vậy A < B  

 

a: Số cần tìm là 5,32:0,125=42,56

b: \(A=1+\dfrac{1}{2019}-1-\dfrac{1}{2018}+\dfrac{1}{2018}-\dfrac{1}{2019}=0\)

7 tháng 1 2023

2020/2019 x 2019/2018 x 2018/2017 x....................3/2
= 2020/2
= 1010 

7 tháng 1 2023

Cám ơn bạn

3 tháng 9 2020

A nhỏ hơn B

3 tháng 9 2020

Ta có :

\(\frac{2018}{2019}\)\(+\)\(\frac{2019}{2018}\)\(=\frac{2018}{2019}\)\(+\frac{1}{2018}\)\(+1>\frac{2018+1}{2019}\)\(+1\)

\(=1+1=2\)

\(\Rightarrow\frac{2018}{2019}\)\(+\frac{2019}{2018}\)\(>2\)

\(\Rightarrow A>B\)

\(A=2018\times2020+2021\) và \(B=2019\times2019+2021\)

\(A=2018\times2019+2018+2021\)

\(B=2018\times2019+2019+2021\)

Vì \(2019>2018\Rightarrow A< B\)

3 tháng 9 2020

Ta có :

2018 x 2020 = 2018 x ( 2019 + 1 ) = 2018 + 2018 x 2019 < 2019 + 2018 x 2019 = 2019 x ( 2018 + 1 )

= 2019 x 2019

=> 2018 x 2020 < 2019 x 2019

=> 2018 x 2020 + 2021 < 2019 x 2019 + 2021

=> A < B