\(A=\dfrac{20^{18}+1}{20^{19}+1};B=\dfrac{20^{17}+1}{20^{18}+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2017

Ta có: \(20A=\dfrac{20^{19}+20}{20^{19}+1}=1+\dfrac{19}{20^{19}+1}\)

\(20B=\dfrac{20^{18}+20}{20^{18}+1}=1+\dfrac{19}{20^{18}+1}\)

\(\dfrac{19}{20^{19}+1}< \dfrac{19}{20^{18}+1}\Rightarrow1+\dfrac{19}{20^{19}+1}< 1+\dfrac{19}{20^{18}+1}\)

\(\Rightarrow20A< 20B\Rightarrow A< B\)

Vậy A < B

17 tháng 5 2017

Ta có: \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)(a \(\in\) N và b,c,d \(\in\) N*)

Áp dụng kiến thức đó, ta được:

A = \(\dfrac{20^{18}+1}{20^{19}+1}\) <\(\dfrac{20^{18}+1+19}{20^{19}+1+19}\)= \(\dfrac{20^{18}+20}{20^{19}+20}\) = \(\dfrac{20\left(20^{17}+1\right)}{20\left(20^{18}+1\right)}\)

= \(\dfrac{20^{17}+1}{20^{18}+1}\) = B

Vậy A < B

\(A=\dfrac{113^{20}+113-112}{113^{19}+1}=113-\dfrac{112}{113^{19}+1}\)

\(B=\dfrac{113^{19}+113-112}{113^{18}+1}=113-\dfrac{112}{113^{18}+1}\)

mà \(113^{19}+1>113^{18}+1\)

nên \(A>B\)

28 tháng 2 2018

Ta có :

\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)

\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)

27 tháng 5 2019

áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{b+m}< 1\left(m\in N\right)\)

Ta có: \(A=\frac{17^{18}-1}{17^{20}-1}< \frac{17^{18}-1-16}{17^{20}-1-16}\)\(=\frac{17^{18}-17}{17^{20}-17}=\frac{17.\left(17^{17}-1\right)}{17.\left(17^{19}-1\right)}\)\(=\frac{17^{17}-1}{17^{19}-1}\)

\(\Rightarrow A< B\)

27 tháng 5 2019

\(A=\frac{17^{18}-1}{17^{20}-1}\Rightarrow17^2A=\frac{17^{18}-1}{17^{18}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}\left(1\right)\)

\(B=\frac{17^{17}-1}{17^{19}-1}\Rightarrow17^2B=\frac{17^{17}-1}{17^{17}-\frac{1}{17^2}}=1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(2\right)\)

\(\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}< \frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\Rightarrow1-\frac{1-\frac{1}{17^2}}{17^{18}-\frac{1}{17^2}}>1-\frac{1-\frac{1}{17^2}}{17^{17}-\frac{1}{17^2}}\left(3\right)\)

Từ \(\left(1\right);\left(2\right)\&\left(3\right)\Rightarrow17^2A>17^2B\Leftrightarrow A>B.\)

Giải:

a) A=1718+1/1719+1

17A=1719+17/1719+1

17A=1719+1+16/1719+1

17A=1+16/1719+1

Tương tự:

B=1717+1/1718+1

17B=1718+17/1718+1

17B=1718+1+16/1718+1

17B=1+16/1718+1

Vì 16/1719+1<16/1718+1 nên 17A<17B

⇒A<B

b) A=108-2/108+2

    A=108+2-4/108+2

    A=1+-4/108+2

Tương tự:

B=108/108+4

B=108+4-4/108+1

B=1+-4/108+1

Vì -4/108+2>-4/108+1 nên A>B

c)A=2010+1/2010-1

   A=2010-1+2/2010-1

   A=1+2/2010-1

Tương tự:

B=2010-1/2010-3

B=2010-3+2/2010-3

B=1+2/2010-3

Vì 2/2010-3>2/2010-1 nên B>A

⇒A<B

Chúc bạn học tốt!

12 tháng 3 2023

17A=1719+1+16/1719+1

17A=1+16/1719+1

phần in nghiêng mình không hiểu lắm, bn giải thích cho mình được ko?

 

26 tháng 4 2017

\(\dfrac{1}{13}A=\dfrac{13^{19}+1}{13^{19}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{19}+\dfrac{1}{13}}\)

\(\dfrac{1}{13}B=\dfrac{13^{20}+1}{13^{20}+\dfrac{1}{13}}=1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)

\(\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< \dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\Rightarrow1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}< 1+\dfrac{\dfrac{12}{13}}{13^{20}+\dfrac{1}{13}}\)

\(\Rightarrow\dfrac{1}{13}A>\dfrac{1}{13}B\Rightarrow A>B\)

Vậy...

27 tháng 4 2017

Ta xét hiệu:

\(A-1=\dfrac{3^{19}+1}{3^{18}+1}-1=\dfrac{3^{19}-3^{18}}{3^{18}+1}=\dfrac{3^{18}.2}{3^{18}+1}\)

\(B-1=\dfrac{3^{20}+1}{3^{19}+1}-1=\dfrac{3^{20}-3^{19}}{3^{19}+1}=\dfrac{3^{19}.2}{3^{19}+1}\)

Xét: \(\dfrac{A-1}{B-1}=\dfrac{3^{18}.2}{3^{18}+1}\cdot\dfrac{3^{19}+1}{3^{19}.2}=\dfrac{3^{19}+1}{\left(3^{18}+1\right).3}=\dfrac{3^{19}+1}{3^{19}+3}< 1\)

=> A-1<B-1

=>A<B

11 tháng 5 2019

#)Giải :

\(A=\frac{20^{18}+1}{20^{19}+1}\)và \(B=\frac{20^{17}+1}{20^{18}+1}\)

\(A=\frac{20^{18}+1}{20^{18+1}+1}\)và \(B=\frac{20^{17}+1}{20^{17+1}+1}\)

\(A=\frac{1}{20+1}\)và \(B=\frac{1}{20+1}\)

\(A=\frac{1}{21}\)và \(B=\frac{1}{21}\)

\(\Rightarrow A=B\)

       #~Will~be~Pens~#

11 tháng 5 2019

A>2018 +1+19/2019 +1+19

A>2018+20/2019+20

A>20(2017+1)/20(2018+1)

A>2017+1/2018+1

=>A>B

Chúc bạn học tốt

24 tháng 1 2024

A<B vì các số mũ đều giống nhau nên sẽ s2 phần số nguyên vậy nên nếu s2 5 với 6 thì 5 bé hơn nên A<B

 

24 tháng 1 2024

giải chi tiết 

 

3 tháng 5 2017

Ta có: \(\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}=\left(\dfrac{1}{19}+1\right)+\left(\dfrac{2}{18}+1\right)+...+1\)

\(=\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+\dfrac{20}{20}=20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)\)

Thế lại bài toán ta được

\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=\dfrac{20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=20\)

3 tháng 5 2017

Ta có

\(\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}\\ =\dfrac{1}{19}+1+\dfrac{2}{18}+1+\dfrac{3}{17}+1+...+\dfrac{19}{1}+1-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{1}-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+20-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{2}+1+19-19\\ =\dfrac{20}{20}+\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}\\ =20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)\)

Thế vào ta có:

\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\\ =\dfrac{20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)}{\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}}\\ =20\)

18 tháng 5 2017

Bài này có rất nhiều cách lm nhé!

Ta có : A = \(\dfrac{17^{18}+1}{17^{19}+1}\) => 17A = \(\dfrac{17^{19}+17}{17^{19}+1}\) = \(1+\dfrac{16}{17^{19}+1}\)

B = \(\dfrac{17^{17}+1}{17^{18}+1}\) => 17B = \(\dfrac{17^{18}+17}{17^{18}+1}\) = \(1+\dfrac{16}{17^{18}+1}\)

\(\dfrac{16}{17^{19}+1}\) < \(\dfrac{16}{17^{18}+1}\) ( vì 1719 +1 > 1716+1 )

=> \(1+\dfrac{16}{17^{19}+1}\) < \(1+\dfrac{16}{17^{18}+1}\)

=> 17A < 17B

=> A < B ( vì 17 > 0)

10 tháng 3 2018

Ta có :

\(A=\dfrac{17^{18}+1}{17^{19}+1}\)

17A= \(17\times\dfrac{17^{18}+1}{17^{19}+1}\)

\(17A=\dfrac{17^{19}+17}{17^{19}+1}\)

\(17A=\dfrac{\left(17^{19}+1\right)+16}{17^{19}+1}\)

\(17A=\dfrac{17^{19}+1}{17^{19}+1}+\dfrac{16}{17^{19}+1}\)

\(17A=1+\dfrac{16}{17^{19}+1}\)

Lại có :

\(B=\dfrac{17^{17}+1}{17^{18}+1}\)

\(17B=17\times\dfrac{17^{17}+1}{17^{18}+1}\)

\(17B=\dfrac{17^{18}+17}{17^{18}+1}\)

\(17B=\dfrac{\left(17^{18}+1\right)+16}{17^{18}+1}\)

\(17B=\dfrac{17^{18}+1}{17^{18}+1}+\dfrac{16}{17^{18}+1}\)

\(17B=1+\dfrac{16}{17^{18}+1}\)

Mà : \(\dfrac{16}{17^{19}+1}< \dfrac{16}{17^{18}+1}\)

\(\Rightarrow1+\dfrac{16}{17^{19}+1}< 1+\dfrac{16}{17^{18}+1}\)

⇒ A < B

Vậy A < B