Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có \(\dfrac{2012+2013}{2013+2014}=\dfrac{2012}{2013+2014}+\dfrac{2013}{2013+2014}\)
mà\(\dfrac{2012}{2013+2014}< \dfrac{2012}{2013}\)
\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2014}\)
\(\Rightarrow\dfrac{2012}{2013}+\dfrac{2013}{2014}>\dfrac{2012}{2013+2014}+\dfrac{2014}{2013+2014}\\ \Rightarrow\dfrac{2012}{2013}+\dfrac{2013}{2014}>\dfrac{2012+2013}{2013+2014}\\ \Rightarrow A>B\)
\(\frac{A}{B}=\frac{7^{2013}+1}{7^{2014}+1}.\frac{7^{2015}+1}{7^{2014}+1}=\frac{7^{4028}+7^{2013}+7^{2015}+1}{7^{4028}+2.7^{2014}+1}=\)
\(=\frac{7^{4028}+7^{2013}\left(1+7^2\right)+1}{7^{4028}+2.7.7^{2013}+1}=\frac{7^{4028}+50.7^{2013}+1}{7^{4028}+14.7^{2013}+1}>1\)
\(\Rightarrow A>B\)
Từ \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Vì \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
=> \(\dfrac{\left(a+b\right)^{2014}}{\left(c+d\right)^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}\)
Mà \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
=> \(\dfrac{\left(a+b\right)^{2014}}{\left(c+d\right)^{2014}}=\dfrac{\left(a-b\right)^{2014}}{\left(c-d\right)^{2014}}=\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a^{2014}}{c^{2014}}=\dfrac{b^{2014}}{d^{2014}}=\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}\) (2)
Từ (1);(2) => \(\dfrac{a^{2014}+b^{2014}}{c^{2014}+d^{2014}}=\left(\dfrac{a-b}{c-d}\right)^{2014}\)
Ta có:
*) \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}\)
\(\Rightarrow S=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)
\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)
\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)
\(\Rightarrow S=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)
Vậy \(\left(S-B\right)^{2016}=\left[\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)\right]^{2016}\)
\(\Rightarrow\left(S-B\right)^{2016}=0^{2016}\)
\(\Rightarrow\left(S-B\right)^{2016}=0\)
a)
\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\\ \Leftrightarrow2^x.1+2^x.2+2^x.2^2+2^x.2^3=120\\ \Leftrightarrow2^x\left(1+2+2^2+2^3\right)=120\\ \Leftrightarrow2^x=8=2^3\\ \Rightarrow x=3\)
b)
\(\dfrac{x+4}{2011}+\dfrac{x+3}{2012}=\dfrac{x+2}{2013}+\dfrac{x+1}{2014}\\ \Leftrightarrow\dfrac{x+4}{2011}+1+\dfrac{x+3}{2012}+1=\dfrac{x+2}{2013}+1+\dfrac{x+1}{2014}+1\\ \Leftrightarrow\dfrac{x+2015}{2011}+\dfrac{x+2015}{2012}=\dfrac{x+2015}{2013}+\dfrac{x+2015}{2014}\\ \Leftrightarrow\left(x+2015\right).\dfrac{1}{2011}+\left(x+2015\right).\dfrac{1}{2012}-\left(x+2015\right).\dfrac{1}{2013}-\left(x+2015\right).\dfrac{1}{2014}=0\\ \Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2013}-\dfrac{1}{2014}\right)=0\\ \Rightarrow x+2015=0\Leftrightarrow x=-2015\)
\(A=\dfrac{2014^{2013}+1}{2014^{2014}+1}\Leftrightarrow2014A=\dfrac{2014^{2014}+2014}{2014^{2014}+1}=\dfrac{2014^{2014}+1+2013}{2014^{2014}+1}=1+\dfrac{2013}{2014^{2014}+1}\)
\(B=\dfrac{2014^{2012}+1}{2014^{2013}+1}\Leftrightarrow2014B=\dfrac{2014^{2013}+2014}{2014^{2013}+1}=\dfrac{2014^{2013}+1+2013}{2014^{2013}+1}=1+\dfrac{2013}{2014^{2013}+1}\)
Dễ thấy: \(1+\dfrac{2013}{2014^{2014}+1}< 1+\dfrac{2013}{2014^{2013}+1}\) nên \(2014A< 2014B\) hay \(A< B\)