Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dung công thức \(a>b\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
\(B=\frac{10^{2017}+1}{10^{2016}+1}>\frac{10^{2017}+1+9}{10^{2016}+1+9}=\frac{10^{2017}+10}{10^{2016}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2015}+1\right)}=\frac{10^{2016}+1}{10^{2015}+1}=A\)
\(\Leftrightarrow B>A\)
\(A=\frac{5^{2016}+1}{5^{2017}+1}\)
\(\Rightarrow5A=\frac{5^{2017}+5}{5^{2017}+1}=1+\frac{4}{5^{2017}+1}\)
\(B=\frac{5^{2017}+1}{5^{2018}+1}\)
\(\Rightarrow5B=\frac{5^{2018}+5}{5^{2018}+1}=1+\frac{4}{5^{2018}+1}\)
Do \(\frac{4}{5^{2018}+1}< \frac{4}{5^{2017}+1}\)
\(\Rightarrow5A>5B\Leftrightarrow A>B\)
10a=10^2017+10/10^2017+1
10b=10^2018+10/10^2018+1
cậu tự so sánh nhé vậy là dễ rồi
Ta có: \(A=\dfrac{10^{2016}+1}{10^{2017}+1}\Rightarrow10A=\dfrac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\dfrac{10^{2017}+10}{10^{2017}+1}\)
\(=\dfrac{10^{2017}+1+9}{10^{2017}+1}=\dfrac{10^{2017}+1}{10^{2017}+1}+\dfrac{9}{10^{2017}+1}=1+\dfrac{9}{10^{2017}+1}\)
Tương tự ta cũng có: \(10B=1+\dfrac{9}{10^{2018}+1}\)
Lại có: \(10^{2017}< 10^{2018}\Rightarrow10^{2017}+1< 10^{2018}+1\)
\(\Rightarrow\dfrac{1}{10^{2017}+1}>\dfrac{1}{10^{2018}+1}\Rightarrow\dfrac{9}{10^{2017}+1}>\dfrac{9}{10^{2018}+1}\)
\(\Rightarrow1+\dfrac{9}{10^{2017}+1}>1+\dfrac{9}{10^{2018}+1}\Rightarrow10A>10B\Rightarrow A>B\)
Ta có: \(\frac{1}{2}A=\frac{2^{2018}-3}{2^{2017}-1}.\frac{1}{2}=\frac{2^{2018}-3}{2^{2018}-2}=\frac{2^{2018}-2-1}{2^{2018}-2}=1-\frac{1}{2^{2018}-2}\)
Tương tự ta có: \(\frac{1}{2}B=1-\frac{1}{2^{2017}-2}\)
Vì \(2^{2018}>2^{2017}\)\(\Rightarrow2^{2018}-2>2^{2017}-2\)
\(\Rightarrow\frac{1}{2^{2018}-2}< \frac{1}{2^{2017}-2}\)\(\Rightarrow1-\frac{1}{2^{2018}-2}>1-\frac{1}{2^{2017}-2}\)
hay \(\frac{1}{2}A>\frac{1}{2}B\)\(\Rightarrow A>B\)( vì \(\frac{1}{2}>0\))
Vậy \(A>B\)
Nhân cả hai tử của \(A\)và \(B\)với 2 , ta được :
\(10A=10.\left(\frac{10^{2016}+1}{10^{2017}+1}\right)=\frac{10^{2017}+1+9}{10^{2017}+1}=1+\frac{9}{2^{2017}+1}\)
\(10B=10\left(\frac{10^{2017}+1}{10^{2018}+1}\right)=\frac{10^{2018}+10}{10^{2018}+1}=\frac{10^{2018}+1+9}{10^{2018}}=1+\frac{9}{10^{2018}+1}\)
Vì \(1=1;9=9\)
\(\Rightarrow\)Ta so sánh mẫu , ta có:
\(10^{2017}< 10^{2018}\)
\(\Rightarrow10^{2017}+1< 10^{2018}+1\)
\(\Rightarrow1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)
\(\Rightarrow10A>10B\)
Hay \(A>B\)