Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dấu ''\(x\)'' là dấu nhân chăng ?
\(A=\frac{2019x2020}{2019x2020+1}\)và \(B=\frac{2020}{2021}\)
Bài ra ta có :
Xét \(A=\frac{2019x2020}{2019x\left(2020+1\right)}=\frac{2020}{2020+1}=\frac{2020}{2021}\)
Vì \(\frac{2020}{2021}=\frac{2020}{2021}\)
Suy ra A = B theo (ĐPCM)
\(\frac{2019}{2020}+\frac{2020}{2019}=1-\frac{1}{2020}+1+\frac{1}{2019}\)
\(=2+\frac{1}{2019}-\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\Rightarrow\frac{1}{2019}-\frac{1}{2020}>0\)
\(\Rightarrow2+\frac{1}{2019}-\frac{1}{2020}>2\)
\(\frac{444443}{222222}=\frac{444444}{222222}-\frac{1}{222222}=2-\frac{1}{222222}< 2\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2019}>\frac{444443}{222222}\)
A=1-1/2019+1-1/2020+1+2/2018
=>A=(1+1+1)+(1/2018-1/2009)+(1/2018-1/2020)
Vì 1/2018>1/2019 và 1/2028>1/2020
=>A>3
Vậy a >A
study well
k nha ủng hộ mk nhé
Mình cũng làm giống thế . nhưng con bạn mình làm a < 3 nên mình không chắc chắn
\(Ta\)có :\(a\)=\(\frac{2017\cdot2018-1}{2017.2018}\)=\(\frac{2017.2018}{2017.2018}\)-\(\frac{1}{2017.2018}\)=1-\(\frac{1}{2017.2018}\)
\(b\)=\(\frac{2019.2020-1}{2019.2020}\)=\(\frac{2019.2020}{2019.2020}\)-\(\frac{1}{2019.2020}\)=1-\(\frac{1}{2019.2020}\)
Vì \(\frac{1}{2018.2019}\)> \(\frac{1}{2019.2020}\)nên \(a\)< \(b\)(sử dụng phần bù)
so sánh a và b biết a=2017×2018−12017×20182017×20182017×2018−1và b =2019×2020−12019×20202019×20202019×2020−1
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
ví dụ
a là 1
b là 2
ta có
1/1 - 1/2 và 1/1x2
= 1/2 và 1/2
khi đó ta thấy 1/2 = 1/2
và 1/1 - 1/2 = 1/1x2
Ta có :
\(A=\dfrac{2019\times2020}{2019\times2020+1}=\dfrac{2019\times2020+1-1}{2019\times2020+1}=1-\dfrac{1}{2019\times2020+1}\)
Suy ra A < 1 (1)
Lại có \(B=\dfrac{2020}{2019}=\dfrac{2019+1}{2019}=\dfrac{2019}{2019}+\dfrac{1}{2019}=1+\dfrac{1}{2019}\)
Suy ra B > 1 (2)
Từ (1) và (2) ta có : A < 1 < B
=> A < B
Vậy A < B