K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

\(A=2015^{2001}=2015^{2000}.2015\)

\(B=2014^{2000}+2014^{2001}=2014^{2000}.\left(2014+1\right)=2014.2015\)

Ta thấy \(2015^{2000}.2015>2014^{2000}.2015\)

\(\Rightarrow A>B\)

5 tháng 7 2017

Ta có \(A=2015^{2001}=2015.2015^{2000}\)

\(B=2014^{2000}+2014^{2001}=2014^{2000}.\left(1+2014\right)\)\(=2015.2014^{2000}\)

Ta thấy \(2014^{2000}< 2015^{2000}\Rightarrow2015.2014^{2000}< 2015.2015^{2000}\)

\(\Rightarrow2015^{2001}>2014^{2000}+2014^{2001}\)

Vậy A>B

22 tháng 11 2015

\(2015^{2001}=2015^{2000}.2015;2014^{2000}+2014^{2001}=2014^{2000}.\left(2014+1\right)=2014.2015\)

Ta thấy 20152000.2015 > 20142000.2014

10 tháng 4 2019

có:A=2000^2001+1/2000^2002+1

=)2000A=2000^2002+2000/2000^2002+1=2000^2002+1+1999/2000^2002+1

             =1999/2000^2002+1

lại có:B=2000^2000+1/2000^2001+1

=)2000B=2000^2001+2000/2000^2001+1=2000^2001+1+1999/2000^2001+1

             =1999/2000^2001+1

vì 1999/2000^2002+1  <   1999/2000^2001+1

=)2000A   < 2000B hay A<B

20 tháng 11 2019

Ta có : A = 20002016 + 20002017

      = 20002016.(1 + 2000)

      = 20002016.2001

      < 20012016.2001

      = 20012017 = B

=> A < B

Vậy A < B

20 tháng 11 2019

B=20002017+2017               ,A=20002016+20002017

Mà 20002016>2017

=>A>B

11 tháng 2 2018

ta có :

\(10A=\frac{10^{2014}+10}{10^{2014}+1}=\frac{\left(10^{2014}+1\right)+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)

\(10B=\frac{10^{2015}+10}{10^{2015}+1}=\frac{\left(10^{2015}+1\right)+9}{10^{2015}+1}=1+\frac{9}{10^{2015}+1}\)

ta thấy \(10^{2014}+1< 10^{2015}+1\Rightarrow\frac{9}{10^{2014}+1}>\frac{9}{10^{2015}+1}\Rightarrow10A>10B\Rightarrow A>B\)