K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
19 tháng 5 2021

\(A=\frac{1}{31}+\frac{1}{33}+\frac{1}{35}+\frac{1}{63}+\frac{1}{65}+\frac{1}{67}+\frac{1}{91}+\frac{1}{92}+\frac{1}{94}\)

\(< \frac{1}{30}+\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+\frac{1}{30}\)

\(=\frac{9}{30}=\frac{3}{10}< \frac{4}{10}=\frac{2}{5}\).

18 tháng 1 2016

A= 31 x35 = 31x (33+2)= 31x33+31x2

B = 33 x 33 = 33 x (31 + 2) = 33 x 31 + 33 x 2

Tao thay 31 x 33 + 31 x2 <  33x31 + 33 x 2

Suy ra A<B

tick cho anh cai nao

18 tháng 1 2016

 

A = 33*33 = (31+2)*33 = 33*31 + 2*33 (1)

B = 31*35 = 31*(33+2) = 33*31 + 2*31 (2)

2*33 > 2*31 --> (1) > (2) hay A > B

14 tháng 8 2016

\(\text{Có 3 trường hợp có thể xảy ra:}\)

\(A=B\)

\(A< B\)
\(A>B\)

14 tháng 8 2016

mik cần giải mà 

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

14 tháng 8 2016

\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{59.60}\)

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{59}-\frac{1}{60}\)

\(B=\left(1+\frac{1}{3}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{59}+\frac{1}{60}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{30}\right)\)

\(B=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}=A\)

14 tháng 8 2016

A > B nhé tích mk vs

a) \(5^{40}\)\(=5^{2.20}\)\(=\left(5^2\right)^{20}\)\(=25^{20}\)

Mà: \(25^{20}\)\(>23^{20}\)\(\left(25>23\right)\)

=>\(5^{40}\)\(>23^{20}\)

11 tháng 8 2016

B = 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/59.60

B = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/59 - 1/60

B = (1 + 1/3 + 1/5 + ... + 1/59) - (1/2 + 1/4 + 1/6 + ... + 1/60)

B = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/59 + 1/60) - 2.(1/2 + 1/4 + 1/6 + ... + 1/60)

B = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/59 + 1/60) - (1 + 1/2 + 1/3 + ... + 1/30)

B = 1/31 + 1/32 + 1/33 + ... + 1/60 = A

=> B = A

11 tháng 8 2016

ta có: Lớn nhất của A là:\(\frac{1}{31}+\frac{1}{31}+...+\frac{1}{31}\)(30 phân số)

         =30/31

  B=1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{3}+...+\frac{1}{59}-\frac{1}{60}\)\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)

Bé nhất của của B là :\(\left(1+1+...+1\right)-\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)

                                \(=30-\frac{30}{60}\)

=>B>A