\(A=\frac{2010}{2011}+\frac{2011}{2012}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2020

ta có : 

\(B=\frac{2010+2011}{2011+2012}=\frac{2010}{2011+2012}+\frac{2011}{2011+2012}\)

ta có : \(\frac{2010}{2011}>\frac{2010}{2011+2012}\)

            \(\frac{2011}{2012}>\frac{2011}{2011+2012}\)

=> \(\frac{2010}{2011}+\frac{2011}{2012}>\frac{2010+2011}{2011+2012}\)

hay A>B

16 tháng 1 2019

A=2.998508205

B=0.999502735

suy ra A>B

30 tháng 5 2019

                                              Bài giải

Theo bài ra :  

\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)

\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)

Ta có : 

\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)

\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)

\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)

\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)

\(\Rightarrow\text{ }A>B\)

7 tháng 3 2017

TA CÓ :

\(B=\frac{2010+2011+2012}{2011+2012+2013}\)

\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

=> A > B 

VẬY , A > B

Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????

19 tháng 4 2016

câu này khó quá mk chịu

21 tháng 2 2017

Tất nhiên là A < B rồi 

12 tháng 7 2016

cac ban lam on giup minh nhanh nhe , thanks rat nhiu

17 tháng 7 2017

Ta có: \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\)

\(=\frac{1}{2010\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)}+\frac{1}{2011\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}\right)}+\frac{1}{2012\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)}\)

\(=\frac{\frac{1}{2010}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}+\frac{\frac{1}{2011}}{\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}}+\frac{\frac{1}{2012}}{\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}}\)

\(=\frac{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}=1\)

Mà \(\frac{2016}{2017}< 1\)

Vậy \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2010}+\frac{2012}{2011}}>\frac{2016}{2017}\)

17 tháng 7 2017

dấu cần điền là : > 

Vì kết quả của phép tính vế thứ 1 là 1 

và phân số 2016/2017 bé hơn 1 nên ta điền dấu lớn

23 tháng 4 2019

a>b nha em

23 tháng 4 2019

B=2010/2011+2012+2011//2011+2012

=2010/2011+2012<2010/2011;2011/2011+2012<2011/2012

suy ra : A>B

23 tháng 3 2020

Ta có A=2010/2011+2011/2012

=(1-1/2011)+(1-1/2012)

=1-1/2011+1-1/2012

=(1+1)-(1/2011+1/2012)

=2-(1/2011+1/2012)

=>A<2

Vì 1/2011+1/2012<1/2+1/2=1

=>2>A>1(1)

Ta có B=(2010+2011)/(2011+2012)

          =(2011+2012-2)/(2011+2012)

         =1-2/(2011+2012)

=>B<1(2)

Từ (1) và (2) => A>B

28 tháng 2 2016

So sánh 2 phân số sau  $\frac{10^{2011}+10}{10^{2012}+10}v\text{à}\frac{10^{2012}-10}{10^{2013}-10}$102011+10102012+10 và102012−10102013−10 

kick dzô chữ xanh là được!! OK

28 tháng 2 2016

Ta có : 

10. A = \(\frac{10.\left(10^{2011}+1\right)}{10^{2012}+1}\)

         = \(\frac{10^{2012}+10}{10^{2012}+1}\)

         = \(\frac{10^{2012}+1+9}{10^{2012}+1}\)

         = \(\frac{10^{2012}+1}{10^{2012}+1}-\frac{9}{10^{2012}+1}\)

         = 1 - \(\frac{9}{10^{2012}+1}\)

10 . B = \(\frac{10.\left(10^{2012}+1\right)}{10^{2013}+1}\)

          = \(\frac{10^{2013}+10}{10^{2013}+1}\)

          = \(\frac{10^{2013}+1+9}{10^{2013}+1}\)

          = 1 - \(\frac{9}{10^{2013}+1}\)

Vì \(\frac{9}{10^{2012}+1}\) >\(\frac{9}{10^{2013}+1}\)  nên 10.A > 10.B

=> A >B 

Vậy ...........

17 tháng 3 2019

\(\frac{2010}{2011}\)\(\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}\)\(\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}\)\(\frac{2012}{2011+2012+2013}\)

=> \(\frac{2010}{2011}\)\(\frac{2011}{2012}\)\(\frac{2012}{2013}\)\(\frac{2010+2011+2012}{2011+2012+2013}\)

=> P > Q